Loading...
38 results
Search Results
Now showing 1 - 10 of 38
- Fractional gradient methods via ψ-Hilfer derivativePublication . Vieira, N.; Rodrigues, M. M.; Ferreira, M.Motivated by the increasing of practical applications in fractional calculus, we study the classical gradient method under the perspective of the ψ-Hilfer derivative. This allows us to cover in our study several definitions of fractional derivatives that are found in the literature. The convergence of the ψ-Hilfer continuous fractional gradient method is studied both for strongly and non-strongly convex cases. Using a series representation of the target function, we develop an algorithm for the ψ-Hilfer fractional order gradient method. The numerical method obtained by truncating higher-order terms was tested and analyzed using benchmark functions. Considering variable order differentiation and optimizing the step size, the ψ-Hilfer fractional gradient method shows better results in terms of speed and accuracy. Our results generalize previous works in the literature.
- Orthogonal Gyrodecompositions of Real Inner Product GyrogroupsPublication . Ferreira, Milton; Suksumran, TeerapongIn this article, we prove an orthogonal decomposition theorem for real inner product gyrogroups, which unify some well-known gyrogroups in the literature: Einstein, M\"{o}bius, Proper Velocity, and Chen's gyrogroups. This leads to the study of left (right) coset partition of a real inner product gyrogroup induced from a subgyrogroup that is a finite dimensional subspace. As~a result, we obtain gyroprojectors onto the subgyrogroup and its orthogonal complement. We~construct also quotient spaces and prove an associated isomorphism theorem. The left (right) cosets are characterized using gyrolines (cogyrolines) together with automorphisms of the subgyrogroup. With~the algebraic structure of the decompositions, we study fiber bundles and sections inherited by the gyroprojectors. Finally, the general theory is exemplified for the aforementioned gyrogroups.
- Some representations for the eigenfunctions of the time-fractional wave operatorPublication . Rodrigues, M.M.; Ferreira, M.; Vieira, NelsonIn this work we present some new representations for the eigenfunctions of the time-fractional wave operator with the time-fractional derivative in the Caputo sense.
- A Time-Fractional Borel–Pompeiu Formula and a Related Hypercomplex Operator CalculusPublication . Ferreira, M.; Rodrigues, M. M.; Vieira, N.In this paper, we develop a time-fractional operator calculus in fractional Clifford analysis. Initially, we study the $L_p$-integrability of the fundamental solutions of the multi-dimensional time-fractional diffusion operator and the associated time-fractional parabolic Dirac operator. Then we introduce the time-fractional analogs of the Teodorescu and Cauchy-Bitsadze operators in a cylindrical domain, and we investigate their main mapping properties. As a main result, we prove a time-fractional version of the Borel-Pompeiu formula based on a time-fractional Stokes' formula. This tool in hand allows us to present a Hodge-type decomposition for the forward time-fractional parabolic Dirac operator with left Caputo fractional derivative in the time coordinate. The obtained results exhibit an interesting duality relation between forward and backward parabolic Dirac operators and Caputo and Riemann-Liouville time-fractional derivatives. We round off this paper by giving a direct application of the obtained results for solving time-fractional boundary value problems.
- Harmonic Analysis on the Möbius GyrogroupPublication . Ferreira, MiltonIn this paper, we propose to develop harmonic analysis on the Poincaré ball B, a model of then-dimensional real hyperbolic space. The Poincaré ball B is the open ball of the Euclidean n-space $\bkR^n$ with radius t >0, centered at the origin of $\bkR^n$ and equipped with Möbius addition, thus forming a Möbius gyrogroup where Möbius addition in the ball plays the role of vector addition in $\bkR^n.$ For any t>0 and an arbitrary parameter $\sigma \in \bkR$ we study the $(\sigma,t)$-translation, the $(\sigma,t)$-convolution, the eigenfunctions of the $(\sigma,t)$-Laplace-Beltrami operator, the $(\sigma,t)$-Helgason Fourier transform, its inverse transform and the associated Plancherel's Theorem, which represent counterparts of standard tools, thus, enabling an effective theory of hyperbolic harmonic analysis. Moreover, when $t \rightarrow +\infty$ the resulting hyperbolic harmonic analysis on B tends to the standard Euclidean harmonic analysis on $\bkR^n,$ thus unifying hyperbolic and Euclidean harmonic analysis. As an application, we construct diffusive wavelets on B.
- Time-fractional telegraph equation of distributed order in higher dimensions with Hilfer fractional derivativesPublication . Vieira, Nelson; Rodrigues, M. Manuela; Ferreira, MiltonIn this paper, we consider time-fractional telegraph equations of distributed order in higher spatial dimensions, where the time derivatives are in the sense of Hilfer, thus interpolating between the Riemann-Liouville and the Caputo fractional derivatives. By employing the techniques of the Fourier, Laplace, and Mellin transforms, we obtain a representation of the solution of the Cauchy problem associated with the equation in terms of convolutions involving functions that are Laplace integrals of Fox H-functions. Fractional moments of the first fundamental solution are computed and for the special case of double-order distributed it is analyzed in detail the asymptotic behavior of the second-order moment, by application of the Tauberian Theorem. Finally, we exhibit plots of the variance showing its behavior for short and long times, and for different choices of the parameters along small dimensions.
- First and second fundamental solutions of the time-fractional telegraph equation of order 2αPublication . Ferreira, Milton; Rodrigues, M. Manuela; Vieira, NelsonIn this work we obtain the first and second fundamental solutions of the multidimensional time-fractional equation of order 2α, α ∈]0, 1], where the two time-fractional derivatives are in the Caputo sense. We obtain representations of the fundamental solutions in terms of Hankel transform, double Mellin-Barnes integral, and H-functions of two variables. As an application, the fundamental solutions are used to solve a Cauchy problem and to study telegraph process with Brownian time.
- A Fractional Analysis in Higher Dimensions for the Sturm-Liouville ProblemPublication . Ferreira, Milton; Rodrigues, M. Manuela; Vieira, NelsonIn this work, we consider the n-dimensional fractional Sturm-Liouville eigenvalue problem, by using fractional versions of the gradient operator involving left and right Riemann-Liouville fractional derivatives. We study the main properties of the eigenfunctions and the eigenvalues of the associated fractional boundary problem. More precisely, we show that the eigenfunctions are orthogonal and the eigenvalues are real and simple. Moreover, using techniques from fractional variational calculus, we prove in the main result that the eigenvalues are separated and form an infinite sequence, where the eigenvalues can be ordered according to increasing magnitude. Finally, a connection with Clifford analysis is established.
- Factorizations of Möbius gyrogroupsPublication . Ferreira, MiltonIn this paper, we consider a Möbius gyrogroup on a real Hilbert space (of finite or infinite dimension) and we obtain its factorization by gyrosubgroups and subgroups. It is shown that there is a duality relation between the quotient spaces and the orbits obtained. As an example, we present the factorization of the Möbius gyrogroup of the unit ball in R^n linked to the proper Lorentz group Spin+(1, n).
- First and second fundamental solutions of the time-fractional telegraph equation with Laplace or Dirac operatorsPublication . Ferreira, Milton; Rodrigues, Manuela M.; Vieira, NelsonIn this work we obtain the first and second fundamental solutions (FS) of the multidimensional time-fractional equation with Laplace or Dirac operators, where the two time-fractional derivatives of orders α ∈]0, 1] and β ∈]1, 2] are in the Caputo sense. We obtain representations of the FS in terms of Hankel transform, double Mellin- Barnes integrals, and H-functions of two variables. As an application, the FS are used to solve Cauchy problems of Laplace and Dirac type.