Logo do repositório
 
A carregar...
Miniatura
Publicação

Orthogonal Gyrodecompositions of Real Inner Product Gyrogroups

Utilize este identificador para referenciar este registo.
Nome:Descrição:Tamanho:Formato: 
symmetry-MFTS_2020.pdf1.31 MBAdobe PDF Ver/Abrir

Orientador(es)

Resumo(s)

In this article, we prove an orthogonal decomposition theorem for real inner product gyrogroups, which unify some well-known gyrogroups in the literature: Einstein, M\"{o}bius, Proper Velocity, and Chen's gyrogroups. This leads to the study of left (right) coset partition of a real inner product gyrogroup induced from a subgyrogroup that is a finite dimensional subspace. As~a result, we obtain gyroprojectors onto the subgyrogroup and its orthogonal complement. We~construct also quotient spaces and prove an associated isomorphism theorem. The left (right) cosets are characterized using gyrolines (cogyrolines) together with automorphisms of the subgyrogroup. With~the algebraic structure of the decompositions, we study fiber bundles and sections inherited by the gyroprojectors. Finally, the general theory is exemplified for the aforementioned gyrogroups.

Descrição

Palavras-chave

Real inner product gyrogroup Orthogonal decomposition Gyroprojection Coset space Partitions Quotient space Gyrolines Cogyrolines fiber bundles

Contexto Educativo

Citação

Ferreira, M.; Suksumran, T. Orthogonal Gyrodecompositions of Real Inner Product Gyrogroups. Symmetry 2020, 12(6), 941.

Projetos de investigação

Unidades organizacionais

Fascículo

Editora

MDPI

Licença CC

Métricas Alternativas