Loading...
3 results
Search Results
Now showing 1 - 3 of 3
- Flow-induced motions of flexible filaments hanging in cross-flowPublication . Silva-Leon, Jorge; Cioncolini, Andrea; Filippone, Antonio; Domingos, MarcoExperiments were carried out to study the dynamics of hanging cantilever flexible filaments in air cross-flow. Thirteen flexible filaments of 0.61 mm diameter and lengths from 20 mm to 60 mm were tested with wind speeds in the range of 1–15 m/s, corresponding to Reynolds numbers of 25 < Red < 610 and reduced velocities in the range of 5 < U∗ < 130. Two synchronized fast-imaging cameras were used to reconstruct the motion of the filaments in three dimensions, and a blend of linear and nonlinear time-series analysis techniques was used to analyze the observed dynamics. Long filaments show a rich dynamics as the wind speed is gradually increased, ranging from small amplitude vibration to large amplitude limit-cycle oscillation and to a more complex chaotic motion. However, short filaments only exhibit a small amplitude vibration-like motion throughout the range of wind speeds tested. Turbulent buffeting is identified as the main source of excitation responsible for the observed filaments dynamics. The results highlight the importance of the filament damping ratio, which is modulated by the filament length, as a controlling parameter for the dynamics of flexible filaments in cross flow, in addition to the flow velocity. The Scruton number for these tests correspond to 31 < Sc < 86.
- Evaluation of in vitro degradation of PCL scaffolds fabricated via BioExtrusion. Part 1: Influence of the degradation environmentPublication . Domingos, M.; Chiellini, F.; Cometa, S.; De Giglio, E.; Grillo-Fernandes, E.; Bártolo, P.; Chiellini, E.One of the most promising approaches in tissue engineering (TE) comprises the development of 3D porous scaffolds which are able to promote tissue regeneration. Biocompatible and biodegradable poly(e-caprolactone) (PCL) structures are increasingly used as temporary extra-cellular matrices for bone tissue engineering. To ensure an appropriate bone restoration over the long term, the selected material must have a degradation rate that match the in-growth of new bone. The in vivo process, by which the scaffold degrades and is resorbed transferring the load and function back to the host tissue, is complex. Consequently, an appropriate preliminary in vitro study is required. A novel extrusion-based technology called BioExtruder was used to produce PCL porous scaffolds made with layers of directionally aligned microfilaments. The in vitro degradation behaviour in both simulated body fluid (SBF) and phosphate buffer solution (PBS) were investigated over 6 months. The characterization of the degradation behaviour of the structures was performed at specific times by evaluating changes in the average molecular weight, the weight loss and its thermal properties. Morphological and surface chemical analyses were also performed using a Scanning Electron Microscopy (SEM) and an X-ray Photoelectron Spectroscopy (XPS), respectively.
- Evaluation of in vitro degradation of PCL scaffolds fabricated via BioExtrusion – Part 2: Influence of pore size and geometry: The present study is to accurately investigate the influence of design parameters, such as filament distance (FD) and lay-down pattern, on the degradation behaviour and kinetics of PCL scaffolds, obtained via BioExtrusionPublication . Domingos, Marco; Chiellini, F.; Cometa, S.; Giglio, E. De; Grillo-Fernandes, E.; Bartolo, Paulo; Chiellini, E.The in vivo degradation processes by which scaffolds degrade and are replaced by neo-tissue are complex and may be influenced by many factors, including environmental conditions, material properties, porosity and 3D architecture. The present study is focused on the influence of design parameters, filament distance (FD) and lay-down pattern, on the degradation kinetics of Polycaprolactone (PCL) scaffolds obtained via BioExtrusion. Through the variation of design parameters it was possible to obtain two groups of scaffolds with distinct pore geometry and size. The in vitro degradation was performed in simulated body fluid (SBF) and in phosphate buffer solution (PBS) for six months. Our results highlight a more complex degradation pattern of the scaffolds in SBF than in PBS, probably related to a mineral deposition. Significant statistical differences in weight loss values at month 6, allowed us to conclude that degradation kinetics of PCL scaffolds is strongly influenced by the pore size.
