ESAD.CR - Artigos em revistas internacionais
Permanent URI for this collection
Browse
Recent Submissions
- Weldability of aluminium-copper in explosive weldingPublication . Carvalho, G. H. S. F. L.; Galvão, I.; Mendes, R.; Loureiro, A.; Leal, RuiA large number of aluminium-copper explosive welds were produced under different welding conditions to perform a broad analysis of the weldability of this combination. The influence of the explosive mixture and the relative positioning of the plates on the welding results were analysed. When the aluminium alloy is positioned as the flyer plate, continuous interfacial melting occurred under the low values of energy lost by the collision, and collision point velocity. This proved that the weldability of the aluminium-copper combination is higher when the copper is positioned as the flyer. A mismatch between the experimental results and the existing theories that define the requirements for achieving consistent welds was noticed. Especially for welds produced using the aluminium alloy as the flyer, the experiments proved to be more restrictive than the theories. These theories, despite being widely applied in dissimilar welding literature, present several limitations concerning aluminium-copper welding. New approaches considering the formation of intermetallic phases at the interface, the properties of both welded metals, and/or the difference in their properties should be developed
- Effect of explosive ratio on explosive welding quality of copper to aluminiumPublication . Loureiro, A.; Mendes, R.; Ribeiro, J. B.; Leal, R. M.The goal of this research is to study the influence of the ratio of an explosive composed of 80% ANFO and 20% matrix on the quality of dissimilar explosive welds of Cu-DHP copper to aluminium alloy 5083-H11, in flat configuration. It is analysed the influence of four explosive ratios (1.4, 1.8, 2.3 and 2.6) on the microstructure and mechanical properties of welds. It was observed that the increase in the explosive ratio gives rise to an increase of the collision point velocity (Vc) and the impact velocity (Vp) and consequently reduces the thickness of the flying plate after welding as well as produces wavy interfaces of greater amplitude. Microstructural analysis showed the formation of hard and brittle intermetallic compounds in the interface region, more obvious in welds made with higher ratio of explosive.
- Influence of base material properties on copper and aluminium–copper explosive weldsPublication . Carvalho, G. H. S. F. L.; Galvão, I.; Mendes, R.; Leal, Rui; Loureiro, A.The influence of base material properties on the interfacial phenomena in copper and aluminium–copper explosive welds was studied. Two explosive mixtures with different detonation velocities were tested. Sound aluminium–copper joints with effective bonding were achieved by using an explosive mixture with a lower detonation velocity. High energy explosives led to extensive interfacial melting, preventing the production of consistent dissimilar welds. Unlike to the similar copper joints, the aluminium–copper welds presented very asymmetrical interfacial waves, rich in intermetallic phases and displaying a curled morphology. The interaction of the materials in dissimilar welding was found to be completely different depending on the positioning of each alloy in the joint, i.e. positioned as the flyer or as the baseplate.
- Aluminum-to-Steel Cladding by Explosive WeldingPublication . Carvalho, Gustavo H. S. F. L.; Galvão, Ivan; Mendes, Ricardo; Leal, Rui M.; Loureiro, AltinoThe production of aluminum-carbon steel and aluminum-stainless steel clads is challenging, and explosive welding is one of the most suitable processes to achieve them. The present work aims to investigate the coupled effect of two strategies for optimizing the production of these clads by explosive welding: the use of a low-density interlayer and the use of a low-density and low-detonation velocity explosive mixture. A broad range of techniques was used to characterize the microstructural and the mechanical properties of the welds, specifically, optical microscopy, scanning electron microscopy, energy dispersive spectroscopy, electron backscatter diffraction, microhardness and tensile-shear testing with digital image correlation analysis. Although aluminum-carbon steel and aluminum-stainless steel have different weldabilities, clads with sound microstructure and good mechanical behavior were achieved for both combinations. These results were associated with the low values of collision point and impact velocities provided by the tested explosive mixture, which made the weldability difference between these combinations less significant. The successful testing of this explosive mixture indicates that it is suitable to be used for welding very thin flyers and/or dissimilar materials that easily form intermetallic phases.
- Explosive welding of aluminium to stainless steel using carbon steel and niobium interlayersPublication . Carvalho, G.H.S.F.L.; Galvão, I.; Mendes, R.; Leal, R. M.; Loureiro, A.This work aimed to study aluminium to stainless steel explosive welds produced using two different interlayers: carbon steel and niobium. The use of each interlayer was analysed and compared microstructurally and mechanically using many characterisation techniques. The final joints using both interlayers presented favourable interfacial microstructure: waves on both interfaces. However, the joint using the carbon steel interlayer showed the best mechanical properties compared to the joints using the niobium interlayer. All interfaces found on both welds were wavy. However, depending on the metallic alloy combination, the shape of the wave is completely different. The results suggest that the shape of the waves is influenced by the shock impedance mismatch of the materials being welded. The impedance mismatch parameter (IMP) developed for explosive welding in this work proved to be a compelling method to order metallic combinations in a single axis to estimate the tendency to form typical or curled waves. Typical symmetrical waves tend to develop less quantity of IMCs than curled waves. However, the mechanical tests performed did not detect differences that could have been caused by this difference.
- Effect of the flyer material on the interface phenomena in aluminium and copper explosive weldsPublication . Carvalho, G.H.S.F.L.; Mendes, R.; Leal, R. M.; Galvão, I.; Loureiro, A.The effect of physical and mechanical properties of three different flyers on the interface phenomena of partially overlapped explosive welds, using the same base plate material, was studied. Flyers of Copper Cu-DHP and aluminium alloy 6082 (tempers T6 and O) were welded to AA6082-T6 base plates. The morphology of the weld interface is strongly influenced by the physical and mechanical properties of the flyer. In the interface of the aluminiumwelds, the use of a flyer of lower hardness and yield strength than the base plate results in asymmetrical waves, with bigger amplitude and smaller wavelength than the weld series of similar temper, and higher mechanical properties. The copper-aluminium welds presented flat interfaces, mainly because of the significant differences inmelting temperature and density between the copper flyer and the aluminiumbase plate. Considering these results and analysing several dissimilar welds carried out by other authors itwas found thatwhen the product of density and melting temperature ratios between the flyer and the base plate exceeds a certain value, there is no formation of waves at the interface of the metals. Furthermore, for the Cu-Al welds, the CuAl2 (θ) intermetallic phase was formed on the bond zone.
- Effect of friction stir processing parameters on the microstructural and electrical properties of copperPublication . Leal, Rui; Galvão, I.; Loureiro, A.; Rodrigues, D. M.Friction stir processing (FSP) is an innovative technology, based on friction stir welding (FSW) operative principles, which can be used for changing locally the microstructure and the mechanical properties of conventional materials. In this work, the copper alloy C12200 was friction stir processed using two distinct tools, i.e. a scrolled and a conical shoulder tool, in order to promote different thermomechanical conditions inside the stirred volume, and consequently, varied post-processed microstructures. The influence of the tool geometry and tool rotation and traverse speeds on the microstructural and electrical properties of the processed copper alloy was analysed. The processing conditions were found to have an important influence on the electrical conductivity of the processed material. The differences in electrical conductivity were explained based on dislocations density effects. The effect of the dislocations density on electrical conductivity of the processed material was found to prevail over the effect of the grain boundaries.
- Effect of explosive mixture on quality of explosive welds of copper to aluminiumPublication . Loureiro, A.; Mendes, R.; Ribeiro, J.B.; Leal, Rui; Galvão, I.The aim of this research is to investigate the influence of explosive ratio and type of sensitizer on the quality of explosive welds between copper and aluminium alloy plates. The welds were performed on a partially overlapping joint configuration using an emulsion explosive (EE) with two different sensitizers, hollow glass microspheres (HGMS) and expanded polystyrene spheres (EPS). Welds with an improved surface were achieved by using the HGMS sensitizer. A higher wave amplitude was registered in welds produced with the EPS sensitizer. In turn, the dimension of the molten pockets was influenced by the explosive ratio, increasing in size with increases in the values of this parameter. The intermetallic content of these zones varied according to the sensitizer type.Unlike the CuAl2 phase, the Cu-richer phases CuAl and Cu9Al4were only identified inwelds performed using the EPS sensitizer. An increase in hardness was observed at the interface of all welds, which resulted from both the presence of intermetallic phases and the plastic deformation of the materials promoted by the impact. This effect was most evident on the aluminium alloy side. All the welds had a greater strength than copper, i.e. the weakest material of the joint.
- The many faces of a face: Comparing stills and videos of facial expressions in eight dimensions (SAVE database)Publication . Garrido, Margarida V.; Lopes, Diniz; Prada, Marília; Rodrigues, David; Jerónimo, Rita; Mourão, Rui P.This article presents subjective rating norms for a new set of Stills And Videos of facial Expressions—the SAVE database. Twenty nonprofessional models were filmed while posing in three different facial expressions (smile, neutral, and frown). After each pose, the models completed the PANAS questionnaire, and reported more positive affect after smiling and more negative affect after frowning. From the shooting material, stills and 5 s and 10 s videos were edited (total stimulus set = 180). A different sample of 120 participants evaluated the stimuli for attractiveness, arousal, clarity, genuineness, familiarity, intensity, valence, and similarity. Overall, facial expression had a main effect in all of the evaluated dimensions, with smiling models obtaining the highest ratings. Frowning expressions were perceived as being more arousing, clearer, and more intense, but also as more negative than neutral expressions. Stimulus presentation format only influenced the ratings of attractiveness, familiarity, genuineness, and intensity. The attractiveness and familiarity ratings increased with longer exposure times, whereas genuineness decreased. The ratings in the several dimensions were correlated. The subjective norms of facial stimuli presented in this article have potential applications to the work of researchers in several research domains. Fromour database, researchers may choose the most adequate stimulus presentation format for a particular experiment, select and manipulate the dimensions of interest, and control for the remaining dimensions. The full stimulus set and descriptive results (means, standard deviations, and confidence intervals) for each stimulus per dimension are provided as supplementary material.
- Formation of intermetallic structures at the interface of steel-to-aluminium explosive weldsPublication . Carvalho, G.H.S.F.L.; Galvão, I.; Mendes, R.; Leal, Rui; Loureiro, A.The formation of intermetallic structures at the interface of carbon steel to 6082 aluminium alloy explosive welds and their influence on the weldability of these two materials were studied. The morphology, the microstructure, the chemical and phase compositions of the welds were characterised by several types of microscopy techniques. The interface characterisation proved that explosive mixtures with a lower detonation velocity were revealed as being more suitable for achieving consistent welds since jet entrapment was prevented and continuous molten layers were not formed at the weld interface. It was also found that the physical properties of the intermetallic phases generated at the weld interface have a strong influence on the weldability of steel-to-aluminium explosive welds. Specifically, it was shown that the formation of aluminium-rich intermetallic phases at the weld interface increases the solidification time of the interfacial molten material, decreasing the weldability of these two materials. The formation of these intermetallic compounds should be avoided by reducing the interaction between the flyer and the baseplate as well as by avoiding excessive molten layers.
- «
- 1 (current)
- 2
- 3
- »
