Name: | Description: | Size: | Format: | |
---|---|---|---|---|
2.63 MB | Adobe PDF |
Advisor(s)
Abstract(s)
Emerging pollutants impose a high degree of stress on marine ecosystems, compromising valuable resources, the planet and human health. Pharmaceutical residues often reachmarine ecosystems, and their input is directly related to human activities. Fluoxetine is an antidepressant, and one of the most prescribed selective
serotonin reuptake inhibitors globally and has been detected in aquatic ecosystems in concentrations up to 40 μg L−1. The present study aims to evaluate the impact of fluoxetine ecotoxicity on the photochemistry, energy metabolism and enzyme activity of Ulva lactuca exposed to environmentally relevant concentrations (0.3, 0.6,
20, 40, and 80 μg L−1). Exogenous fluoxetine exposure induced negative impacts on U. lactuca photochemistry, namely on photosystem II antennae grouping and energy fluxes. These impacts included increased oxidative stress and elevated enzymatic activity of ascorbate peroxidase and glutathione reductase. Lipid content increased and the altered levels of key fatty acids such as hexadecadienoic (C16:2) and linoleic (C18:2) acids revealed strong correlations with fluoxetine concentrations tested. Multivariate analyses reinforced the oxidative stress and chlorophyll a fluorescence-derived traits as efficient biomarkers for future toxicology studies.
Description
The authors would like to thank Fundação para a Ciência e a Tecnologia (FCT) for funding the research at MARE (UIDB/04292/2020 and UIDP/04292/2020), ARNET-Aquatic Research Infrastructure Network Associated Laboratory (LA/P/0069/2020), BioISI (UID/MULTI/04046/2019) and via project grant PTDC/CTA-AMB/30056/2017 (OPTOX). Work was also funded by the Integrated Programme of SR&TD SmartBioR (reference Centro-01-0145-FEDER-000018), co-funded by Centro 2020 program, Portugal 2020, European Union, through the European Regional Development Fund. BD and VF were supported by researcher contracts (CEEC-IND/00511/2017 and 2021.00244.CEECIND). MC and SN is supported by a DL-57 investigation contract.
Keywords
Antidepressants Macroalgae Oxidative stress Pharmaceuticals Photobiology
Citation
Feijão E, Cruz de Carvalho R, Duarte IA, Matos AR, Cabrita MT, Utkin AB, Caçador I, Marques JC, Novais SC, Lemos MFL, Reis-Santos P, Fonseca VF and Duarte B (2022), Fluoxetine induces photochemistry-derived oxidative stress on Ulva lactuca. Front. Environ. Sci. 10:963537. doi: 10.3389/fenvs.2022.963537
Publisher
Frontiers