Loading...
2 results
Search Results
Now showing 1 - 2 of 2
- Fluoxetine induces photochemistry-derived oxidative stress on Ulva lactucaPublication . Feijão, Eduardo; Carvalho, Ricardo Cruz de; Duarte, Irina A.; Matos, Ana Rita; Cabrita, Maria Teresa; Utkin, Andrei B.; Caçador, Isabel; Marques, João Carlos; Novais, Sara C.; Lemos, Marco F.L.; Reis-Santos, Patrick; Fonseca, Vanessa; Duarte, BernardoEmerging pollutants impose a high degree of stress on marine ecosystems, compromising valuable resources, the planet and human health. Pharmaceutical residues often reachmarine ecosystems, and their input is directly related to human activities. Fluoxetine is an antidepressant, and one of the most prescribed selective serotonin reuptake inhibitors globally and has been detected in aquatic ecosystems in concentrations up to 40 μg L−1. The present study aims to evaluate the impact of fluoxetine ecotoxicity on the photochemistry, energy metabolism and enzyme activity of Ulva lactuca exposed to environmentally relevant concentrations (0.3, 0.6, 20, 40, and 80 μg L−1). Exogenous fluoxetine exposure induced negative impacts on U. lactuca photochemistry, namely on photosystem II antennae grouping and energy fluxes. These impacts included increased oxidative stress and elevated enzymatic activity of ascorbate peroxidase and glutathione reductase. Lipid content increased and the altered levels of key fatty acids such as hexadecadienoic (C16:2) and linoleic (C18:2) acids revealed strong correlations with fluoxetine concentrations tested. Multivariate analyses reinforced the oxidative stress and chlorophyll a fluorescence-derived traits as efficient biomarkers for future toxicology studies.
- Comfortably numb: Ecotoxicity of the non-steroidal anti-inflammatory drug ibuprofen on Phaeodactylum tricornutumPublication . Feijão, Eduardo; Carvalho, Ricardo da Cruz de; Duarte, Irina A.; Matos, Ana Rita; Cabrita, Maria Teresa; Barreiro, Aldo; Lemos, Marco F.L.; Novais, Sara C.; Marques, João Carlos; Caçador, Isabel; Reis-Santos, P.; Silva, Marisa; Fonseca, Vanessa; Duarte, BernardoEmerging pollutants such as pharmaceuticals are continuously released to aquatic environments posing a rising threat to marine ecosystems. Yet, monitoring routines and ecotoxicity data on biota worldwide for these substances are lacking. Non-steroidal anti-inflammatory drugs are among the most prescribed and found pharmaceuticals in aquatic environments. The toxicity effects of environmentally relevant concentrations of ibuprofen on primary productivity, oxidative stress and lipid metabolism of the diatom Phaeodactylum tricornutum were assessed. Diatom cultures were exposed to 0, 0.8, 3, 40, 100 and 300 μg L-1 ibuprofen concentrations, usually found in the vicinity of wastewater treatment plants and coastal environments. Higher concentrations (100 and 300 μg L-1) had a negative impact in P. triconutum growth, inhibiting the chloroplastic energy transduction in the electron transport chain resulting in lower energy reaching the PS I (r2 = - 0.55, p < 0.05). In contrast, the mitochondrial electron transport and available energy increased (r2 = 0.68 and r2 = 0.85, p < 0.05 respectively), mostly due to enhancements in lipid and protein contents as opposed to reduction of carbohydrates. A general up-regulation of the antioxidant enzymes could contributed to alleviate oxidative stress resulting in the decrease of lipid peroxidation products (r2 = 0.77, p < 0.05). Canonical analysis of principal components was performed and successfully discriminated exposure groups, with optical data excelling in classifying samples to different ibuprofen concentrations, being potentially used as environmental indicators. Finally, the identified mild to severe effects of ibuprofen on diatoms are likely to be exacerbated by the sustained use of this drug worldwide, underpinning the urgency of evaluating the impacts of this pharmaceutical on coastal and marine trophic webs.