Loading...
118 results
Search Results
Now showing 1 - 10 of 118
- Sand smelt ability to cope and recover from ocean's elevated CO 2 levelsPublication . Silva, Cátia S. E.; Lemos, Marco F. L.; Faria, Ana M.; Lopes, Ana F.; Mendes, Susana; Gonçalves, Emanuel J.; Novais, Sara C.Considered a major environmental concern, ocean acidification has induced a recent research boost into effects on marine biodiversity and possible ecological, physiological, and behavioural impacts. Although the majority of literature indicate negative effects of future acidification scenarios, most studies are conducted for just a few days or weeks, which may be insufficient to detect the capacity of an organism to adjust to environmental changes through phenotypic plasticity. Here, the effects and the capacity of sand smelt larvae Atherina presbyter to cope and recover (through a treatment combination strategy) from short (15 days) and long-term exposure (45 days) to increasing pCO2 levels (control: ~515 μatm, pH = 8.07; medium: ~940 μatm, pH = 7.84; high: ~1500 μatm, pH = 7.66) were measured, addressing larval development traits, behavioural lateralization, and biochemical biomarkers related with oxidative stress and damage, and energy metabolism and reserves. Although behavioural lateralization was not affected by high pCO2 exposure, morphometric changes, energetic costs, and oxidative stress damage were impacted differently through different exposures periods. Generally, short-time exposures led to different responses to either medium or high pCO2 levels (e.g. development, cellular metabolism, or damage), while on the long-term the response patterns tend to become similar between them, with both acidification scenarios inducing DNA damage and tending to lower growth rates. Additionally, when organisms were transferred to lower acidified condition, they were not able to recover from the mentioned DNA damage impacts. Overall, results suggest that exposure to future ocean acidification scenarios can induce sublethal effects on early life-stages of fish, but effects are dependent on duration of exposure, and are likely not reversible. Furthermore, to improve our understanding on species sensitivity and adaptation strategies, results reinforce the need to use multiple biological endpoints when assessing the effects of ocean acidification on marine organisms.
- Asparagopsis armata exudate cocktail: the quest for the mechanisms of toxic action of an invasive seaweed on marine invertebratesPublication . Silva, Carla; Simões, Tiago; Félix, Rafael; A.M.V.M., Soares; Barata, Carlos; Novais, Sara C.; Lemos, Marco F.L.The seaweed Asparagopsis armata exhibits a strong invasive behavior, producing halogenated compounds with effective biological effects. This study addresses the biochemical responses to sublethal concentrations of A. armata exudate on the marine snail Gibbula umbilicalis whole body and the shrimp Palaemon elegans eyes and hepatopancreas. Antioxidant defenses superoxide dismutase (SOD) and glutathione-S-transferase (GST), oxidative damage endpoints lipid peroxidation (LPO) and DNA damage, the neuronal parameter acetylcholinesterase (AChE), and the fatty acid profile were evaluated. Results revealed different metabolic responses in both species. Despite previous studies indicating that the exudate affected G. umbilicalis’ survival and behavior, this does not seem to result from oxidative stress or neurotoxicity. For P. elegans, the inhibition of AChE and the decrease of antioxidant capacity is concomitant with the increase of LPO, suggesting neurotoxicity and oxidative stress as contributor mechanisms of toxicity for this species. Fatty acid profile changes were more pronounced for P. elegans with a general increase in polyunsaturated fatty acids (PUFAs) with the exudate exposure, which commonly means a defense mechanism protecting from membrane disruption. Nonetheless, the omega-3 PUFAs arachidonic acid (ARA) and docosapentaenoic acid (DPA) increased in both invertebrates, indicating a common regulation mechanism of inflammation and immunity responses
- Occurrence and distribution of persistent organic pollutants in the liver and muscle of Atlantic blue sharks: Relevance and health risksPublication . Muñoz-Arnanz, Juan; Bartalini, Alice; Alves, Luís; Lemos, Marco F.L.; Novais, Sara C.; Jiménez, BegoñaBlue shark score among the most abundant, widely distributed and worldwide consumed elasmobranchs. In this work contents of PCBs, PCDD/Fs and PBDEs were studied by means of GC-HRMS in muscle and liver of sixty blue sharks from the North East Atlantic sampled in 2019. Concentrations relatively similar were found for PCBs and PCDD/Fs in comparison with those in Atlantic specimens from the same area sampled in 2015. In contrast, PBDE loads doubled, likely mirroring the increased environmental presence of these pollutants. This, together with the different congener profiles reported for the same species in other geographical areas, highlighted the blue shark’s potential as bioindicator of the degree and fingerprints of regional pollution by POPs. Interesting dissimilarities between muscle and liver concentrations were detected, most likely ascribed to distinct toxicokinetics involved for the different pollutants. Whereas most POPs preferentially accumulated in liver, some did the opposite in muscle. BDE-209 was the most prominent example, being almost negligible its presence in liver (0.3%) while accounting for ca. 14% of the total PBDE content in muscle. Different findings in this regard described for other shark species call for focused research to ascertain the role of the species in this apparent favored metabolization of BDE-209 in the liver. From a consumption perspective, the concentrations found in muscle -the most relevant part in the human diet-for PCBs and dioxin-like POPs were below the EU maximum allowed levels in foodstuff. Conversely, in liver about 58% and 78% of samples overpassed the European levels for tolerable intake of i-PCBs and dioxin POPs, respectively. Concentrations of PBDEs exceeded EQS (0.0085 ng/g w.w.) established by the European Water Framework Directive in 100% and 92% of liver and muscle samples, respectively, which adds to the open debate of such as a reduce value for this current EQS.
- An Insight into Sargassum muticum Cytoprotective Mechanisms against Oxidative Stress on a Human Cell In Vitro ModelPublication . Pinteus, Susete; Lemos, Marco; Silva, Joana; Alves, Celso; Neugebauer, Agnieszka; Freitas, Rafaela; Duarte, Adriana; Pedrosa, RuiSargassum muticum is a brown seaweed with strong potential to be used as a functional food ingredient, mainly due to its antioxidant properties. It is widely used in traditional oriental medicine for the treatment of numerous diseases. Nevertheless, few studies have been conducted to add scientific evidence on its effects as well as on the mechanisms of action involved. In this work, the human cell line MCF-7 was used as an in vitro cellular model to evaluate the capability of Sargassum muticum enriched fractions to protect cells on an oxidative stress condition. The concentration of the bioactive compounds was obtained by vacuum liquid chromatography applied on methanol (M) and 1:1 methanol:dichloromethane (MD) crude extracts, resulting in seven enriched fractions from the M extraction (MF2-MF8), and eight fractions from the MD extraction (MDF1-MDF8). All fractions were tested for cytotoxic properties on MCF-7 cells and the nontoxic ones were tested for their capacity to blunt the damaging effects of hydrogen peroxide-induced oxidative stress. The nontoxic effects were also confirmed in 3T3 fibroblast cells as a nontumor cell line. The antioxidant potential of each fraction, as well as changes in the cell's real-time hydrogen peroxide production, in the mitochondrial membrane potential, and in Caspase-9 activity were evaluated. The results suggest that the protective effects evidenced by S. muticum can be related with the inhibition of hydrogen peroxide production and the inhibition of Caspase-9 activity.
- Assessment of fipronil toxicity to the freshwater midge Chironomus riparius: Molecular, biochemical, and organismal responsesPublication . Monteiro, Hugo R.; Pestana, João L. T.; Novais, Sara C.; Leston, Sara; Ramos, Fernando; Soares, Amadeu M. V. M.; Devreese, Bart; Lemos, Marco F. L.Fipronil is a phenylpyrazole insecticide that entered the market to replace organochlorides and organophosphates. Fipronil impairs the regular inhibition of nerve impulses that ultimately result in paralysis and death of insects. Because of its use as a pest control, and due to runoff events, fipronil has been detected in freshwater systems near agricultural areas, and therefore might represent a threat to non-target aquatic organisms. In this study, the toxicity of fipronil to the freshwater midge Chironomus riparius was investigated at biochemical, molecular, and whole organism (e.g. growth, emergence, and behavior) levels. At the individual level, chronic (28 days) exposure to fipronil resulted in reduced larval growth and emergence with a lowest observed effect concentration (LOEC) of 0.081 μg L−1. Adult weight, which is directly linked to the flying performance and fecundity of midges, was also affected (LOEC = 0.040 μg L−1). Additionally, behavioral changes such as irregular burrowing behavior of C. riparius larvae (EC50 = 0.084 μg L−1) and impairment of adult flying performance were observed. At a biochemical level, acute (48 h) exposure to fipronil increased cellular oxygen consumption (as indicated by the increase of electron transport system (ETS) activity) and decreased antioxidant and detoxification defenses (as suggested by the decrease in catalase (CAT) and glutathione S-transferase (GST) activities). Exposure to fipronil also caused alterations in the fatty acid profile of C. riparius, since high levels of stearidonic acid (SDA) were observed. A comparison between exposed and nonexposed larvae also revealed alterations in the expression of globins, cytoskeleton and motor proteins, and proteins involved in protein biosynthesis. These alterations may aid in the interpretation of potential mechanisms of action that lead to the effects observed at the organism level. Present results show that environmentally relevant concentrations of fipronil are toxic to chironomid populations which call for monitoring of phenylpyrazole insecticides and of their ecological effects in freshwaters. Present results also emphasize the importance of complementing ecotoxicological data with molecular approaches such as proteomics, for a better interpretation of the mode of action of insecticides in aquatic invertebrates.
- Does an invasive bivalve outperform its native congener in a heat wave scenario? A laboratory study case with Ruditapes decussatus and R. philippinarumPublication . Crespo, Daniel; Leston, Sara; Rato, Lénia D.; Martinho, Filipe; Novais, Sara C.; Pardal, Miguel A.; Lemos, Marco F. L.Global warming and the subsequent increase in the frequency of temperature anomalies are expected to affect marine and estuarine species’ population dynamics, latitudinal distribution, and fitness, allowing non-native opportunistic species to invade and thrive in new geographical areas. Bivalves represent a significant percentage of the benthic biomass in marine ecosystems worldwide, often with commercial interest, while mediating fundamental ecological processes. To understand how these temperature anomalies contribute to the success (or not) of biological invasions, two closely related species, the native Ruditapes decussatus and the introduced R. philippinarum, were exposed to a simulated heat wave. Organisms of both species were exposed to mean summer temperature (~18 C) for 6 days, followed by 6 days of simulated heat wave conditions (~22 C). Both species were analysed for key ecological processes such as bioturbation and nutrient generation—which are significant proxies for benthic function and habitat quality—and subcellular biomarkers—oxidative stress and damage, and energetic metabolism. Results showed subcellular responses to heat waves. However, such responses were not expressed at the addressed ecological levels. The subcellular responses to the heat wave in the invasive R. philippinarum pinpoint less damage and higher cellular energy allocation to cope with thermal stress, which may further improve its fitness and thus invasiveness behaviour.
- Fluoxetine induces photochemistry-derived oxidative stress on Ulva lactucaPublication . Feijão, Eduardo; Carvalho, Ricardo Cruz de; Duarte, Irina A.; Matos, Ana Rita; Cabrita, Maria Teresa; Utkin, Andrei B.; Caçador, Isabel; Marques, João Carlos; Novais, Sara C.; Lemos, Marco F.L.; Reis-Santos, Patrick; Fonseca, Vanessa; Duarte, BernardoEmerging pollutants impose a high degree of stress on marine ecosystems, compromising valuable resources, the planet and human health. Pharmaceutical residues often reachmarine ecosystems, and their input is directly related to human activities. Fluoxetine is an antidepressant, and one of the most prescribed selective serotonin reuptake inhibitors globally and has been detected in aquatic ecosystems in concentrations up to 40 μg L−1. The present study aims to evaluate the impact of fluoxetine ecotoxicity on the photochemistry, energy metabolism and enzyme activity of Ulva lactuca exposed to environmentally relevant concentrations (0.3, 0.6, 20, 40, and 80 μg L−1). Exogenous fluoxetine exposure induced negative impacts on U. lactuca photochemistry, namely on photosystem II antennae grouping and energy fluxes. These impacts included increased oxidative stress and elevated enzymatic activity of ascorbate peroxidase and glutathione reductase. Lipid content increased and the altered levels of key fatty acids such as hexadecadienoic (C16:2) and linoleic (C18:2) acids revealed strong correlations with fluoxetine concentrations tested. Multivariate analyses reinforced the oxidative stress and chlorophyll a fluorescence-derived traits as efficient biomarkers for future toxicology studies.
- A biorefinery approach to the biomass of the seaweed Undaria pinnatifida (Harvey Suringar, 1873): obtaining phlorotannins-enriched extracts for wound healingPublication . Ferreira, Carolina A. M.; Félix, Rafael; Félix, Carina; Januário, Adriana P.; Alves, Nuno; Novais, Sara C.; Dias, Juliana R.; Lemos, Marco F.L.Brown seaweeds are recognized sources of compounds with a wide range of properties and applications. Within these compounds, phlorotannins are known to possess several bioactivities (e.g., antioxidant, anti-inflammatory, and antimicrobial) with potential to improve wound healing. To obtain phlorotannins enriched extracts from Undaria pinnatifida, a biorefinery was set using lowcost industry-friendly methodologies, such as sequential solid–liquid extraction and liquid–liquid extraction. The obtained extracts were screened for their antioxidant and antimicrobial activity against five common wound pathogens and for their anti-inflammatory potential. The ethanolic wash fraction (wE100) had the highest antioxidant activity (114.61 +- 10.04 mmol mg-1 extract by Diphenyl-1-picrylhydrazyl (DPPH) and 6.56 +-1.13mMeq. Fe II mg-1 extract by and Ferric Reducing Antioxidant Power (FRAP)), acting efficiently against Gram-negative (Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus) bacteria, and showing a nitric oxide production inhibition over 47% when used at 0.01 ug mL-1. NMR and FTIR chemical characterization suggested that phlorotannins are present. Obtained fraction wE100 proved to be a promising candidate for further inclusion as wound healing agents, while the remaining fractions analyzed are potential sources for other biotechnological applications, giving emphasis to a biorefinery and circular economy framework to add value to this seaweed and the industry.
- Modelling integrated multi-trophic aquaculture: Optimizing a three trophic level systemPublication . Granada, Luana; Lopes, Sofia; Novais, Sara C.; Lemos, Marco F. L.As a fast-growing food production industry, aquaculture is dealing with the need for intensification due to the global increasing demand for fish products. However, this also implies the use of more sustainable practices to reduce negative environmental impacts currently associated with this industry, including the use of wild resources, destruction of natural ecosystems, eutrophication of effluent receiving bodies, impacts due to inadequate medication practices, among others. Using multi-species systems, such as integrated multi-trophic aquaculture, allows to produce economically important species while reducing some of these aquaculture concerns, through biomitigation of aquaculture wastes and reduction of diseases outbreaks, for example. Applying mathematical models to these systems is crucial to control and understand the interactions between species, maximizing productivity, with important environmental and economic benefits. Here, the application of some equations and models available in the literature, regarding basic parameters, is discussed – population dynamics, growth, waste production, and filtering rate – when considering the description and optimization of a theoretical integrated multi-trophic aquaculture operation composed by three trophic levels.
- Macroalgas das Berlengas e Costa de Prata: Do conhecimento à utilizaçãoPublication . Franco, João N.; Lemos, Marco F.L.; Neto, João M.A Costa de Prata, região litoral compreendida entre Esmoriz (Aveiro) e Torres Vedras (Lisboa), caracteriza-se, a norte, pelo domínio de praias de areia fina cortadas pelos maciços rochosos da Serra da Boa Viagem, da Nazaré e de São Martinho do Porto. Já a sul de Peniche, dominam os afloramentos rochosos, submareais e intermareais, que frequentemente emergem do mar em imponentes arribas que vincam o limite continental. É nesta zona que podemos encontrar o arquipélago das Berlengas, um território insular que se encontra ao abrigo de um regime especial de proteção, a Reserva Marinha das Berlengas, bem conhecido pela sua riqueza natural.