Loading...
6 results
Search Results
Now showing 1 - 6 of 6
- Cytotoxic mechanism of sphaerodactylomelol, an uncommon bromoditerpene isolated from sphaerococcus coronopifoliusPublication . Alves, Celso; Silva, Joana; Pinteus, Susete; Alonso, Eva; Alvarino, Rebeca; Duarte, Adriana; Marmitt, Diorge; Geottert, Márcia Inês; Gaspar, Helena; Alfonso, Amparo; Alpoim, Maria C.; Botana, Luis M; Pedrosa, RuiMarine natural products have exhibited uncommon chemical structures with relevant antitumor properties highlighting their potential to inspire the development of new anticancer agents. The goal of this work was to study the antitumor activities of the brominated diterpene sphaerodactylomelol, a rare example of the dactylomelane family. Cytotoxicity (10–100 M; 24 h) was evaluated on tumor cells (A549, CACO-2, HCT-15, MCF-7, NCI-H226, PC-3, SH-SY5Y, SK-ML-28) and the effects estimated by MTT assay. Hydrogen peroxide (H2O2) levels and apoptosis biomarkers (membrane translocation of phosphatidylserine, depolarization of mitochondrial membrane potential, Caspase-9 activity, and DNA condensation and/or fragmentation) were studied in the breast adenocarcinoma cellular model (MCF-7) and its genotoxicity on mouse fibroblasts (L929). Sphaerodactylomelol displayed an IC50 range between 33.04 and 89.41 M without selective activity for a specific tumor tissue. The cells’ viability decrease was accompanied by an increase on H2O2 production, a depolarization of mitochondrial membrane potential and an increase of Caspase-9 activity and DNA fragmentation. However, the DNA damage studies in L929 non-malignant cell line suggested that this compound is not genotoxic for normal fibroblasts. Overall, the results suggest that the cytotoxicity of sphaerodactylomelol seems to be mediated by an increase of H2O2 levels and downstream apoptosis.
- Disclosing the antitumour potential of the marine bromoditerpene sphaerococcenol a on distinct cancer cellular modelsPublication . Alves, Celso; Silva, Joana; Afonso, Marta B.; Guedes, Romina A.; Guedes, Rita C.; Alvariño, Rebeca; Pinteus, Susete; Gaspar, Helena; Goettert, Marcia I.; Alfonso, Amparo; Rodrigues, Cecília M. P.; Alpoim, Maria C.; Botana, Luis; Pedrosa, RuiNature has revealed to be a key source of innovative anticancer drugs. This study evaluated the antitumour potential of the marine bromoditerpene sphaerococcenol A on different cancer cellular models. Dose-response analyses (0.1–100 μM; 24 h) were accomplished in eight different tumour cell lines (A549, CACO-2, HCT-15, MCF-7, NCI-H226, PC-3, SH-SY5Y, SK-MEL-28). Deeper studies were conducted on MFC-7 cells, namely, determination of hydrogen peroxide (H2O2) levels and evaluation of apoptosis biomarkers (phosphatidylserine membrane translocation, mitochondrial dysfunction, Caspase-9 activity, and DNA changes). The ability of the compound to induce genotoxicity was verified in L929 fibroblasts. Sphaerococcenol A capacity to impact colorectal-cancer stem cells (CSCs) tumourspheres (HT29, HCT116, SW620) was evaluated by determining tumourspheres viability, number, and area, as well as the proteasome inhibitory activity. Sphaerococcenol A hepatoxicity was studied in AML12 hepatocytes. The compound exhibited cytotoxicity in all malignant cell lines (IC50 ranging from 4.5 to 16.6 μM). MCF-7 cells viability loss was accompanied by H2O2 generation, mitochondrial dysfunction, Caspase-9 activation and DNA nuclear morphology changes. Furthermore, the compound displayed the lowest IC50 on HT29-derived tumourspheres (0.70 μM), followed by HCT116 (1.77 μM) and SW620 (2.74 μM), impacting the HT29 tumoursphere formation by reducing their number and area. Finally, the compound displayed low cytotoxicity on AML12 hepatocytes without genotoxicity. Overall, sphaerococcenol A exhibits broad cytotoxic effects on different tumour cells, increasing H2O2 production and apoptosis. It also affects colorectal CSCs-enriched tumoursphere development. These data highlight the elevance to include sphaerococcenol A in further pharmacological studies aiming cancer treatments.
- Natural approaches for neurological disorders: The neuroprotective potential of Codium tomentosumPublication . Silva, Joana; Martins, Alice; Alves, Celso; Pinteus, Susete; Gaspar, Helena; Alfonso, Amparo; Pedrosa, RuiParkinson’s disease (PD) is the second most common neurodegenerative disorder, and is characterized by a progressive degeneration of the dopaminergic neurons in the substantia nigra. Although not completely understood, several abnormal cellular events are known to be related with PD progression, such as oxidative stress, mitochondrial dysfunction and apoptosis. Accordingly, the aim of this study was to evaluate the neuroprotective e ects of Codium tomentosum enriched fractions in a neurotoxicity model mediated by 6-hydroxydopamine (6-OHDA) on SH-SY5Y human cells, and the disclosure of their mechanisms of action. Additionally, a preliminary chemical screening of the most promising bioactive fractions of C. tomentosum was carried out by GC-MS analysis. Among the tested fractions, four samples exhibited the capacity to revert the neurotoxicity induced by 6-OHDA to values higher or similar to the vitamin E (90.11 +- 3.74% of viable cells). The neuroprotective e ects were mediated by the mitigation of reactive oxygen species (ROS) generation, mitochondrial dysfunctions and DNA damage, together with the reduction of Caspase-3 activity. Compounds belonging to different chemical classes, such as terpenes, alcohols, carboxylic acids, aldehydes, esters, ketones, saturated and unsaturated hydrocarbons were tentatively identified by GC-MS. The results show that C. tomentosum is a relevant source of neuroprotective agents, with particular interest for preventive therapeutics.
- Disclosing the potential of eleganolone for Parkinson’s disease therapeutics: neuroprotective and anti-inflammatory activitiesPublication . Silva, Joana; Alves, Celso; Pinteus, Susete; Susano, Patrícia; Simões, Marco; Guedes, Miguel; Martins, Alice; Rehfeldt, Stephanie; Gaspar, Helena; Goettert, Márcia Inês; Alfonso, Amparo; Pedrosa, RuiThe treatment of Parkinson´s disease (PD) has benefited from significant advances resulting from the increasing research efforts focused on new therapeutics. However, the current treatments for PD are mostly symptomatic, alleviating disease symptoms without reversing or retarding disease progression. Thus, it is critical to find new molecules that can result in more effective treatments. Within this framework, this study aims to evaluate the neuroprotective and anti-inflammatory effects of three compounds (eleganolone, eleganonal and fucosterol) isolated from the brown seaweed Bifurcaria bifurcata. In vitro neuroprotective effects were evaluated on a PD cellular model induced by the neurotoxin 6-hydroxydopamine (6-OHDA) on SH-SY5Y human cells, while lipopolysaccharide (LPS) -stimulated RAW 264.7 macrophages were used to evaluate the anti-inflammatory potential. Additionally, the underlying mechanisms of action were also investigated. Compounds were isolated by preparative chromatographic methods and their structural elucidation attained by NMR spectroscopy. Among the tested compounds, eleganolone (0.1–1 μM; 24 h) reverted the neurotoxicity induced by 6-OHDA in about 20%. The neuroprotective effects were mediated by mitochondrial protection, reduction of oxidative stress, inflammation and apoptosis, and inhibition of NF-kB pathway. The results suggest that eleganolone may provide advantages in the treatment of neurodegenerative conditions and, therefore, should be considered for future preclinical studies.
- Bromoditerpenes from the red seaweed Sphaerococcus coronopifolius as potential cytotoxic agents and proteasome inhibitors and related mechanisms of actionPublication . Alves, Celso; Silva, Joana; Pintéus, Susete; Guedes, Romina A.; Guedes, Rita C.; Alvariño, Rebeca; Freitas, Rafaela; Goettert, Márcia I.; Gaspar, Helena; Alfonso, Amparo; Alpoím, Maria C.; Botana, Luis M.; Pedrosa, RuiSeaweeds are a great source of compounds with cytotoxic properties with the potential to be used as anticancer agents. This study evaluated the cytotoxic and proteasome inhibitory activities of 12R-hydroxy-bromosphaerol, 12S-hydroxy-bromosphaerol, and bromosphaerol isolated from Sphaerococcus coronopifolius. The cytotoxicity was evaluated on malignant cell lines (A549, CACO-2, HCT-15, MCF-7, NCI-H226, PC-3, SH-SY5Y, and SK-MEL-28) using the MTT and LDH assays. The ability of compounds to stimulate the production of hydrogen peroxide (H2O2) and to induce mitochondrial dysfunction, the externalization of phosphatidylserine, Caspase-9 activity, and changes in nuclear morphology was also studied on MCF-7 cells. The ability to induce DNA damage was also studied on L929 fibroblasts. The proteasome inhibitory activity was estimated through molecular docking studies. The compounds exhibited IC50 values between 15.35 and 53.34 μM. 12Rhydroxy-bromosphaerol and 12S-hydroxy-bromosphaerol increased the H2O2 levels on MCF-7 cells, and bromosphaerol induced DNA damage on fibroblasts. All compounds promoted a depolarization of mitochondrial membrane potential, Caspase-9 activity, and nuclear condensation and fragmentation. The compounds have been shown to interact with the chymotrypsin-like catalytic site through molecular docking studies; however, only 12S-hydroxy-bromosphaerol evidenced interaction with ALA20 and SER169, key residues of the proteasome catalytic mechanism. Further studies should be outlined to deeply characterize and understand the potential of those bromoditerpenes for anticancer therapeutics.
- Loliolide, a new therapeutic option for neurological diseases? In vitro neuroprotective and anti-inflammatory activities of a monoterpenoid lactone isolated from codium tomentosumPublication . Silva, Joana; Alves, Celso; Martins, Alice; Susano, Patrícia; Simões, Marco; Guedes, Miguel; Rehfeldt, Stephanie; Pinteus, Susete; Gaspar, Helena; Rodrigues, Américo; Goettert, Márcia Inês; Alfonso, Amparo; Pedrosa, RuiParkinsons Disease (PD) is the second most common neurodegenerative disease worldwide, and is characterized by a progressive degeneration of dopaminergic neurons. Without an effective treatment, it is crucial to find new therapeutic options to fight the neurodegenerative process, which may arise from marine resources. Accordingly, the goal of the present work was to evaluate the ability of the monoterpenoid lactone Loliolide, isolated from the green seaweed Codium tomentosum, to prevent neurological cell death mediated by the neurotoxin 6-hydroxydopamine (6-OHDA) on SH-SY5Y cells and their anti-inflammatory effects in RAW264.7 macrophages. Loliolide was obtained from the diethyl ether extract, purified through column chromatography and identified by NMR spectroscopy. The neuroprotective effects were evaluated by the MTT method. Cells’ exposure to 6-OHDA in the presence of Loliolide led to an increase of cells’ viability in 40%, and this effect was mediated by mitochondrial protection, reduction of oxidative stress condition and apoptosis, and inhibition of the NF-KB pathway. Additionally, Loliolide also suppressed nitric oxide production and inhibited the production of TNF- and IL-6 pro-inflammatory cytokines. The results suggest that Loliolide can inspire the development of new neuroprotective therapeutic agents and thus, more detailed studies should be considered to validate its pharmacological potential.