Loading...
7 results
Search Results
Now showing 1 - 7 of 7
- Developing an OPC UA Server for CNC MachinesPublication . Martins, André; Lucas, João; Costelha, Hugo; Neves, CarlosThis paper addresses the concept of Industry 4.0 from the perspective of the molds industry, a key industry in today’s industrial panorama. With its constant modernization, several technologies have been introduced, in particular regarding machining equipment. With each brand and model requiring different (proprietary) interfaces and communication protocols, this technological diversity renders the automatic interconnection with production management software extremely challenging. In this paper a methodology to build monitoring solutions for machining devices is defined, based on the main equipment and operations used by molds industry companies. For a standardized approach, OPC UA is used for high-level communication between the various systems. As a key result of this paper, and given the variety of monitoring systems and communication protocols, the developed approach combines various different machine interfaces on a single system, in order to cover a relevant subset of machining equipment currently in use by the molds industry. This kind of all-in-one approach will give production managers access to the information needed for a continuous monitoring and improvement of the entire production process.
- CNC Machines Integration in Smart Factories using OPC UAPublication . Martins, André; Lucas, João; Costelha, Hugo; Neves, CarlosThis paper examines the idea of Industry 4.0 from the perspective of the molds industry, a vital industry in today’s industrial panorama. Several technologies, particularly in the area of machining equipment, have been introduced as a result of the industry’s constant modernization. This technological diversity makes automatic interconnection with production management software extremely difficult, as each brand and model requires different, mostly proprietary, interfaces and communication protocols. In the methodology presented in this paper, a development of monitoring solutions for machining devices is defined supporting the leading equipment and operations used by molds industry companies. OPC UA is employed for high-level communication between the various systems for a standardized approach. The approach combines various machine interfaces on a single system to cover a significant subset of machining equipment currently used by the molds industry, as a key result of this paper and given the variety of monitoring systems and communication protocols. This type of all-in-one approach will provide production managers with the information they need to monitor and improve the complete manufacturing process.
- Supporting the Design, Commissioning and Supervision of Smart Factory Components through their Digital TwinPublication . Martins, André; Costelha, Hugo; Neves, CarlosIn a context of greater complexity of Smart Factories, the commissioning time for automated systems needs to be shortened. The use of virtual commissioning tools is a good contribution to achieve this goal. Ideally, those tools should be part of a virtual engineering environment sharing same virtual model, the digital twin, through the complete lifecycle of the automated system, namely the project, simulation, implementation and execution/monitoring/supervision and, eventually decommissioning phases. Such vision includes a digital twin with a broader use, which is consistent with the real system and one that can be used after the early design and commissioning phases. Finding a complete set of tools able to comply with the above requirements can be extremely challenging. In this paper we explore the use of the ABB RobotStudio software combined with the OPC UA standard with this vision in mind. Methodologies were defined to integrate both new generation and legacy equipment, as well as robot controllers and guidelines for equipment development. A key result of this work is the development of a set of virtual engineering tools and methodologies based on OPC UA and implemented using RobotStudio in order to accomplish the complete lifecycle support of an automated system, from the project and simulation phases, to the monitoring and supervision phases, suitable for integration in Industry 4.0 factories. Results are described for a test scenario with different devices.
- Shop Floor Virtualization and Industry 4.0Publication . Martins, André; Costelha, Hugo; Neves, CarlosThis paper addresses one of the key components in today’s industrialization approach: virtualization. The work describes the virtualization of a typical production process, the digital twin in the scope of Industry 4.0, involving different devices, such as robotic arms, conveyors, automatic warehouses and vision systems. It includes both legacy and recent equipment, with different characteristics and communication capabilities, ranging from RS232 serial communication to TCP/IP-based communication, or even I/O-based interaction for devices with no communication capabilities. The developed approach aims at industrial implementations, while allowing for educational purposes. For a standardized approach, the OPC UA protocol is used for high-level communication between the various systems. Several results are described showing the success of the methodology and application.
- Digital Twin Development for a Quality Control CellPublication . Marcella Cavalcanti; Costelha, Hugo; Neves, Carlos; Martins, André; Luís PerdigotoThe Digital Twin is one of the enabling technologies of Industry 4.0, Cyber-Physical Systems and Smart Factories. In this context, Digital Twins can be developed for being employed through the entire lifecycle of a system, for design, operation, monitoring, maintenance, and even fault prediction and reconfiguration. This paper describes the development of a Digital Twin for a Quality Control cell that is part of a larger manufacturing process in the automotive industry. The virtual environment was built using ABB RobotStudio, the communication between devices in the cell was implemented with OPC UA (UA. NET and open62541), and the process data are registered in a database using MySQL. The results show a fully functional simulation of the cell's behaviour and future development will include the connection of the Digital Twin with the real system.
- Flexible Manufacturing Systems Through the Integration of Asset Administration Shells, Skill-Based Manufacturing, and OPC UAPublication . Martins, André; Costelha, Hugo; Neves, Carlos; Cosgrove, John; Lyons, JohnThe advent of Industry 4.0 has created a need for more flexible and adaptable manufacturing systems. This paper proposes the integration of AAS (Asset Administration Shells), SBM (Skill-based manufacturing) and OPC UA (Open Platform Communications Unified Architecture), to enable more flexible manufacturing systems. The integration of these concepts provides a solution for achieving faster and easier dynamic reconfiguration in manufacturing systems, which is essential for fulfilling the demand of customization and flexibility in modern production systems. An Asset Administration Shell provides a standardized structure for describing assets and their administration, while Skill-based manufacturing enables the deployment of task-oriented machines that can self-configure, self-diagnose, and self-optimize their performance. The use of OPC UA as a communication protocol ensures that these systems can communicate with one another in a secure and reliable way. This paper presents a conceptual framework for the integration of these three open technologies. This framework contributes to having a single interface and source of information for every asset, which can lead to increased efficiency by reducing changeover times, thus reducing the overall cost in flexible manufacturing system scenarios. Future work will focus on the implementation and validation of this framework in a real-world manufacturing setting.
- An approach to integrating manufacturing data from legacy Injection Moulding Machines using OPC UAPublication . Martins, André; Miguel Lopes e Silva, Bruno; Costelha, Hugo; Neves, Carlos; Lyons, John; Cosgrove, JohnTo achieve the ambitions related with the concept of a Smart Factory, manufacturers of new industrial devices have been developing and releasing products capable of integrating themselves into fully-connected environments, with the communication capabilities and advanced specifications required. In these environments, the automatic retrieval of data across the shop floor is a must, allowing the analysis of machine performance for increased production quality and outputs. On most of the recently released industrial devices this machine data is readily available. However, the same is not true when using legacy devices. It is also well established that most SMEs are unable or do not intend to radically replace their industrial devices with this purpose only, since that would imply a high investment, and mainly because many of these legacy machines remain highly productive. That said, there is a need to develop integration methodologies for these legacy industrial devices and provide them with smart factory communication capabilities that make them suitable for the new Smart Factory environments. In this work, an approach is proposed, using as a case study an industrial shop floor, to integrate data from a range of injection moulding machines, from different generations and different models / manufacturers. This equipment diversity renders the automatic interconnection extremely challenging, but is also representative of many existing industrial scenarios. This research will contribute to the development of integration methodologies and, consequently, improve equipment compatibility. To apply these methodologies, information about specific machines within the shop floor was gathered, as well as their communication and I/O capabilities, together with other features deemed relevant. A trend in recently released machines can be identified, revealing a special focus on the use of OPC UA standard, making use of its address space based on the structured Euromap information models. On the other hand, the legacy devices mainly allow outputting a text file to an external storage unit connected to the machine, containing machine and injection cycles related information. Regarding the communication interfaces available, the Ethernet interface reveals to be the most common among the recently acquired machines, while USB is the main interface in older equipment. An experimental solution was developed for the presented case study, which uses the machine's USB interface to access these files at each injection cycle, mapping the acquired data to structured information model variables, according with Euromap specifications, and making it available through an OPC UA server address space. The developed server provides a standardized, interoperable, scalable, and secure approach for data exchange between the injection moulding machines and various OPC UA clients, allowing device monitoring and control during operation, as well as transmitting this data to higher-level management systems, e.g., MES and ERP systems. This solution shows that older legacy devices, available across the shop floors, can be retrofitted and integrated in Smart Factory scenarios, side-by-side with recently released equipment, giving production managers access to information needed to monitor and improve the production process, thus moving towards the Factories of the Future.