Loading...
Research Project
Untitled
Funder
Authors
Publications
Disclosing the potential of eleganolone for Parkinson’s disease therapeutics: neuroprotective and anti-inflammatory activities
Publication . Silva, Joana; Alves, Celso; Pinteus, Susete; Susano, Patrícia; Simões, Marco; Guedes, Miguel; Martins, Alice; Rehfeldt, Stephanie; Gaspar, Helena; Goettert, Márcia Inês; Alfonso, Amparo; Pedrosa, Rui
The treatment of Parkinson´s disease (PD) has benefited from significant advances resulting from the increasing research efforts focused on new therapeutics. However, the current treatments for PD are mostly symptomatic, alleviating disease symptoms without reversing or retarding disease progression. Thus, it is critical to find new molecules that can result in more effective treatments. Within this framework, this study aims to evaluate the neuroprotective and anti-inflammatory effects of three compounds (eleganolone, eleganonal and fucosterol) isolated from the brown seaweed Bifurcaria bifurcata. In vitro neuroprotective effects were evaluated on a PD cellular model induced by the neurotoxin 6-hydroxydopamine (6-OHDA) on SH-SY5Y human cells, while lipopolysaccharide (LPS) -stimulated RAW 264.7 macrophages were used to evaluate the anti-inflammatory potential. Additionally, the underlying mechanisms of action were also investigated. Compounds were isolated by preparative chromatographic methods and their structural elucidation attained by NMR spectroscopy. Among the tested compounds, eleganolone (0.1–1 μM; 24 h) reverted the neurotoxicity induced by 6-OHDA in about 20%. The neuroprotective effects were mediated by mitochondrial protection, reduction of oxidative stress, inflammation and apoptosis, and inhibition of NF-kB pathway. The results suggest that eleganolone may provide advantages in the treatment of neurodegenerative conditions and, therefore, should be considered for future preclinical studies.
Antioxidant and neuroprotective potential of the brown seaweed Bifurcaria bifurcata in an in vitro Parkinson’s Disease Model
Publication . Silva, Joana; Alves, Celso; Freitas, Rafaela; Martins, Alice; Pinteus, Susete; Ribeiro, Joana; Gaspar, Helena; Alfonso, Amparo; Pedrosa, Rui
Bifurcaria bifurcata is a marine brown seaweed mainly found on the Atlantic coast. Herein, we report the antioxidant and neuroprotective activities of seven fractions (F1–F7) obtained by normal phase chromatography from the B. bifurcata dichloromethane extract, as well as of its two major isolated diterpenes. Total phenolic content of fractions was determined by the Folin–Ciocalteu method, while antioxidant activity was evaluated by the DPPH, ORAC, and FRAP assays. Neuroprotective effects were evaluated in a neurotoxic model induced by 6-hydroxydopamine (6-OHDA) in a human neuroblastoma cell line (SH-SY5Y), while the mechanisms associated to neuroprotection were investigated by the determination of mitochondrial membrane potential, H2O2 production, Caspase-3 activity, and by observation of DNA fragmentation. Fractions F4 and F5
exhibited the best neuroprotective and antioxidant activities, respectively. F4 fraction prevented changes in mitochondrial potential, and induced a reduction of H2O2 levels production and an increase in cell viability, suggesting that it may contain multi-target compounds acting on different pathways. Hence, this fraction was subjected to purification steps, affording the known diterpenes eleganolone and eleganonal. Both compounds exhibited antioxidant potential, being interesting candidates for further neuroprotective studies.
Gelidiales are not just agar: Revealing the antimicrobial potential of Gelidium corneum for skin disorders
Publication . Matias, Margarida; Pinteus, Susete; Martins, Alice; Silva, Joana; Alves, Celso; Mouga, Teresa; Gaspar, Helena; Pedrosa, Rui
In recent decades, seaweeds have proven to be an excellent source of bioactive molecules. Presently, the seaweed Gelidium corneum is harvested in a small area of the Portuguese coast exclusively for agar extraction. The aim of this work was to fully disclosure Gelidium corneum as a sustainable source of antimicrobial ingredients for new dermatological formulations, highlighting its potential to be explored in a circular economy context. For this purpose, after a green sequential extraction, these seaweed fractions (F1–F5) were chemically characterized (1H NMR) and evaluated for their antimicrobial potential against taphylococcus aureus, Staphylococcus epidermidis and Cutibacterium acnes. The most active fractions were also evaluated for their effects on membrane potential, membrane integrity and DNA damage. Fractions F2 and F3 displayed the best results, with IC50 values of 16.1 (7.27–23.02) g/mL and 51.04 (43.36–59.74) g/mL against C. acnes, respectively, and 53.29 (48.75–57.91) g/mL and 102.80 (87.15–122.30) g/mL against S. epidermidis, respectively. The antimicrobial effects of both fractions seem to be related to membrane hyperpolarization and DNA damage. This dual mechanism of action may provide therapeutic advantages for the treatment of skin dysbiosis-related diseases.
Seaweed’s role in energetic transition: From environmental pollution challenges to enhanced electrochemical devices
Publication . Pinteus, Susete; Susano, Patrícia; Alves, Celso; Silva, Joana; Martins, Alice; Pedrosa, Rui
Resulting from the growing human population and the long dependency on fossil-based energies, the planet is facing a critical rise in global temperature, which is affecting all ecosystem networks. With a growing consciousness this issue, the EU has defined several strategies towards environment sustainability, where biodiversity restoration and preservation, pollution reduction, circular economy, and energetic transition are paramount issues. To achieve the ambitious goal of becoming climate-neutral by 2050, it is vital to mitigate the environmental footprint of the energetic transition, namely heavy metal pollution resulting from mining and processing of raw materials and from electronic waste disposal. Additionally, it is vital to find alternative materials to enhance the efficiency of energy storage devices. This review addresses the environmental challenges associated with energetic transition, with particular emphasis on the emergence of new alternative materials for the development of cleaner energy technologies and on the environmental impacts of mitigation
strategies. We compile the most recent advances on natural sources, particularly seaweed, with regard to their use in metal recycling, bioremediation, and as valuable biomass to produce biochar for electrochemical applications.
Neuroprotective effect of Luteolin-7-O-Glucoside against 6-OHDA-induced damage in undifferentiated and RA-differentiated SH-SY5Y cells
Publication . Rehfeldt, Stephanie Cristine Hepp; Silva, Joana; Pinteus, Susete; Pedrosa, Rui; Alves, Celso; Laufer, Stefan; Goettert, Márcia Inês
Luteolin is one of the most common flavonoids present in edible plants and its potential benefits to the central nervous system include decrease of microglia activation, neuronal damage and high antioxidant properties. The aim of this research was to evaluate the neuroprotective, antioxidant and anti-inflammatory activities of luteolin-7-O-glucoside (Lut7). Undifferentiated and retinoic acid (RA)-differentiated SH-SY5Y cells were pretreated with Lut7 and incubated with 6-hydroxydopamine (6-OHDA). Cytotoxic and neuroprotective effects were determined by MTT assay. Antioxidant capacity was determined by DPPH, FRAP, and ORAC assays. ROS production, mitochondrial membrane potential (DYm), Caspase–3 activity, acetylcholinesterase inhibition (AChEI) and nuclear damage were also determined in SH-SY5Y cells. TNF- , IL-6 and IL-10 release were evaluated in LPS-induced RAW264.7 cells by ELISA. In undifferentiated SH-SY5Y cells, Lut7 increased cell
viability after 24 h, while in RA-differentiated SH-SY5Y cells, Lut7 increased cell viability after 24 and 48 h. Lut7 showed a high antioxidant activity when compared with synthetic antioxidants. In undifferentiated cells, Lut7 prevented mitochondrial membrane depolarization induced by 6-OHDA treatment, decreased Caspase-3 and AChE activity, and inhibited nuclear condensation and fragmentation. In LPS-stimulated RAW264.7 cells, Lut7 treatment reduced TNF- levels and increased IL-10 levels after 3 and 24 h, respectively. In summary, the results suggest that Lut7 has neuroprotective effects, thus, further studies should be considered to validate its pharmacological potential in more complex models, aiming the treatment of neurodegenerative diseases.
Organizational Units
Description
Keywords
Contributors
Funders
Funding agency
Fundação para a Ciência e a Tecnologia
Funding programme
9471 - RIDTI
Funding Award Number
PTDC/BIA-OUT/29250/2017