Loading...
7 results
Search Results
Now showing 1 - 7 of 7
- Does an invasive bivalve outperform its native congener in a heat wave scenario? A laboratory study case with Ruditapes decussatus and R. philippinarumPublication . Crespo, Daniel; Leston, Sara; Rato, Lénia D.; Martinho, Filipe; Novais, Sara C.; Pardal, Miguel A.; Lemos, Marco F. L.Global warming and the subsequent increase in the frequency of temperature anomalies are expected to affect marine and estuarine species’ population dynamics, latitudinal distribution, and fitness, allowing non-native opportunistic species to invade and thrive in new geographical areas. Bivalves represent a significant percentage of the benthic biomass in marine ecosystems worldwide, often with commercial interest, while mediating fundamental ecological processes. To understand how these temperature anomalies contribute to the success (or not) of biological invasions, two closely related species, the native Ruditapes decussatus and the introduced R. philippinarum, were exposed to a simulated heat wave. Organisms of both species were exposed to mean summer temperature (~18 C) for 6 days, followed by 6 days of simulated heat wave conditions (~22 C). Both species were analysed for key ecological processes such as bioturbation and nutrient generation—which are significant proxies for benthic function and habitat quality—and subcellular biomarkers—oxidative stress and damage, and energetic metabolism. Results showed subcellular responses to heat waves. However, such responses were not expressed at the addressed ecological levels. The subcellular responses to the heat wave in the invasive R. philippinarum pinpoint less damage and higher cellular energy allocation to cope with thermal stress, which may further improve its fitness and thus invasiveness behaviour.
- Depressed, hypertense and sore: Long-term effects of fluoxetine, propranolol and diclofenac exposure in a top predator fishPublication . Duarte, Irina A.; Ries-Santos, Patrick; Novais, Sara C.; Rato, Lénia D.; Lemos, Marco F.L.; Freitas, Andreia; Pouca, Ana Sofia Vila; Barbosa, Jorge; Cabral, Henrique N.; Fonseca, Vanessa F.Pharmaceutical compounds are continuously released into the aquatic environment, resulting in their ubiquitous presence in many estuarine and coastal systems. As pharmaceuticals are designed to produce effects at very low concentrations and target specific evolutionary conserved pathways, there are growing concerns over their potential deleterious effects to the environment and specifically to aquatic organisms, namely in early life-stages. In this context, the long-term effects of exposure of juvenile meagre Argyrosomus regius to three different pharmaceuticals were investigated. Fish were exposed to environmental concentrations of one of three major used pharmaceuticals: the antidepressant fluoxetine (0.3 and 3 μg/L for 15 days), the anti-hypertensive propranolol and the non-steroidal anti-inflammatory agent diclofenac (0.3 and 15 μg/L for 30 days). Pharmaceuticals bioconcentration in fish muscle was examined, along with biomarkers in different tissues related with antioxidant and biotransformation responses (catalase, superoxide dismutase, ethoxyresorufin-O-deethylase and glutathione S-transferase), energetic metabolism (lactate dehydrogenase, isocitrate dehydrogenase and electron transport systemactivities), neurotransmission (acetylcholinesterase activity) and oxidative damage (DNA damage and lipid peroxidation levels). Overall, each pharmaceutical had different potential for bioconcentration in the muscle (FLX N PROP N DCF) and induced different biological responses: fluoxetine was the most toxic compound to juvenile meagre, affecting fish growth, triggering antioxidant defense responses, inhibiting detoxification mechanisms and increasing lipid peroxidation and DNA damage in the liver; propranolol exposure increased DNA damage and decreased aerobic metabolism in fish muscle; and diclofenac showed no potential to bioconcentrate, yet it affected fish metabolism by increasing cellular energy consumption in the muscle and consequently reducing fish net energy budget. The diverse response patterns evidence the need for future research focused on pharmaceuticals with different modes of action and their exposure effects on organismal physiological mechanisms and homeostatic status. Ultimately, the combination of sub-individual and individual responses is key for ecologically relevant assessments of pharmaceutical toxicity.
- Euryhalinity and thermal tolerance of Phyllorhiza punctata (Scyphozoa) scyphostomae: life history and physiological trade‑offsPublication . Rato, Lénia D.; Pinto, Carlos; Duarte, Inês M.; Leandro, Sérgio M.; Marques, Sónia C.Phenomena such as global warming, rising sea temperatures and extreme weather and climate anomalies such as floods and heat waves have been shown to alter absolute salinity values. While affecting marine and estuarine population dynamics, these scenarios may also favour the invasion and proliferation of opportunistic and potentially harmful species in new geographical areas—such as blooming jellyfish. These organisms are one of the less studied taxa, particularly the proliferative asexual benthic phase, to which effects of in situ and experimental global change scenarios are poorly addressed. Acclimation and plasticity to global change scenarios were individually assessed through life history and physiological responses (survival, settlement time, time until maturity, feeding activity, asexual reproduction and behaviour) of laboratory-reared ciliated buds and polyps (= scyphostomae) of the invasive Phyllorhiza punctata (Cnidaria: Rhizostomeae). The present study evaluated the effects of two temperature levels (21 °C—current thermal scenario, or 25 °C—warming scenario) and six salinity regimes resembling estuarine and marine conditions (15, 20, 25, 30, 35 or 40) during 21 days. Under warming, P. punctata scyphostomae showed faster development and budding rates upon estuarine-like salinities, but higher mortality and reduced development under marine-like conditions—an ecological niche trade-off since at 21 °C such pattern was not found. Overall, our results suggest that global changes might prompt P. punctata proliferation through polyp colonisation mainly in estuarine areas and potentially increase blooming events with further implications at local and regional scales.
- European lobster (Homarus gammarus) larvae under an acidification scenario: addressing biochemical, development and behaviour responsesPublication . Rato, Lénia da Fonseca Alexandre; Leandro, Sérgio Miguel Franco Martins; Lemos, Marco Filipe Loureiro; Novais, Sara CalçadaA acidificação dos oceanos constitui uma problemática global e a realidade de que está, efetivamente, a acontecer não é uma consideração subjetiva. A Acidificação dos oceanos provocada por emissões de dióxido de carbono de origem antropogénica tem vindo a reduzir o pH das águas superficiais do Oceano e projeções preveem a continuidade deste processo. Embora muita investigação tenha sido desenvolvida no âmbito dos invertebrados que calcificam, tais como moluscos e crustáceos, poucos consideraram o estudo de efeitos ao nível sub-celular para avaliar stress oxidativo ou respostas funcionais do metabolismo energético em tais condições, interligando vários níveis de organização biológica. O objetivo do presente estudo foi o de avaliar os efeitos da exposição a diferentes níveis-alvo de pCO2 (controlo: 370 μatm; aumentado: 710 μatm) e de pH (controlo: 8.15; reduzido: 7.85) em parâmetros de crescimento bem como avaliar respostas comportamentais e bioquímicas relacionadas com stress oxidativo e metabolismo energético durante o desenvolvimento larvar de um crustáceo decápode. Este cenário de acidificação está de acordo com os RCPs previstos pelo Painel Intergovernamental para as Alterações Climáticas (IPCC, 2014) para o ano 2100. Para o presente estudo, foi utilizado o crustáceo Homarus gammarus (L.) – sendo uma espécie com elevado valor comercial, que tem vindo a sofrer elevada pressão de pesca em águas Europeias. Fêmeas adultas provenientes da costa Atlântica Oeste Portuguesa foram obtidas de um retalhista local. Após a eclosão em ambiente laboratorial controlado, larvas provenientes da mesma progenitora foram expostas às condições acima descritas desde o momento da eclosão até à chegada ao Estádio III. A sobrevivência individual e ocorrência de ecdise foram avaliados individualmente de 12h em 12h. Réplicas de cada tratamento foram recolhidas em momentos específicos durante o Estádio I (primeiro estádio larvar) e Estádio III (último estádio larvar) para análise morfométrica e de crescimento (peso fresco e comprimento carapaça) e respostas bioquímicas. Os biomarcadores analisados incluíram parâmetros relacionados com stress oxidativo e danos (atividade da enzima superóxido dismutase (SOD), peroxidação lipídica (LPO) e danos no DNA) e metabolismo energético (atividade da cadeia transportadora de eletrões (ETS) e da enzima lactato desidrogenase (LDH) e quantificação de Hidratos de Carbono). Os resultados obtidos sugerem que a sobrevivência diminui e que o período inter-muda é afetado durante a exposição a cenários de acidificação. No que respeita aos parâmetros de crescimento/morfométricos, larvas do cenário de acidificação apresentam uma tendência para crescimento diminuído, menor peso e comprimento de carapaça. As análises bioquímicas realizadas indicam a ocorrência de stress oxidativo sob condições de acidificação. Respostas ao nível do metabolismo energético não variaram significativamente entre tratamentos. Os resultados apontam também para que fases larvares possam possuir um sistema antioxidante ainda em desenvolvimento, tornando-as mais suscetíveis ao stress oxidativo. As fases larvares são uma fase vulnerável e crucial no ciclo de vida das espécies, influenciando o recrutamento e a renovação de stocks. Este estudo contribui para um melhor entendimento sobre a vulnerabilidade desta espécie num cenário de alterações climáticas – Acidificação dos oceanos – ao endereçar os mecanismos envolvidos nas respostas deste crustáceo a este agente causador de stress.
- Homarus gammarus (Crustacea: Decapoda) larvae under an ocean acidification scenario: responses across different levels of biological organizationPublication . Rato, Lénia D.; Novais, Sara C.; Lemos, Marco F.L.; Alves, Luís M.; Leandro, Sérgio M.The present study evaluated the effects of exposure to different target pCO2 levels: control (C: 370 μatm, pH =8.15) and ocean acidification (OA: 710 μatm, pH=7.85) on development and biochemical responses related with oxidative stress and energy metabolism during the crustacean Homarus gammarus (L.) larval development, integrating different levels of biological organization. After hatching in the laboratory, larvae from the same female brood were exposed to the described conditions from hatching until reaching Stage III (last larval stage - 11 days). H. gammarus larvae demonstrated some susceptibility when addressing the predicted pCO2 levels for 2100. Further analysis at the biochemical and physiological level highlighted the occurrence of oxidative stress in the OA scenario (Superoxide Dismutase reduction and higher DNA damage) that was followed by developmental effects, increased inter-moult period from SII to SIII and reduced growth. The extended exposure to these conditions may affect organisms' key life-cycle functions such as physiological resistance, growth, sexual maturation, or reproduction with implications in their future fitness and population dynamics.
- Shared and distinct patterns of genetic structure in two sympatric large decapodsPublication . Ellis, Charlie D.; Macleod, Kirsty L.; Jenkins, Tom L.; Rato, Lénia D.; Jézéquel, Youenn; Pavičić, Mišo; Díaz, David; Stevens, Jamie R.Aim: Comparing genetic structure in species with shared spatial ranges and ecological niches can help identify how dissimilar aspects of biology can shape differences in population connectivity. Similarly, where species are widely distributed across heterogeneous environments and major topographic barriers, knowledge of the structuring of populations can help reveal the impacts of factors which limit dispersal and/or drive divergence, aiding conservation management. Location: European seas of the northeast Atlantic and Mediterranean. Taxa: European clawed lobster (Homarus gammarus) and European crawfish (Palinurus elephas), two sympatric, heavily fished decapods with extensive dispersal potential. Methods: By RAD-sequencing 214 H. gammarus from 32 locations and 349 P. elephas from 15 locations, we isolated 6340 and 7681 SNP loci, respectively. Using these data to characterise contemporary population structuring, we investigate potential spatial and environmental drivers of genomic heterogeneity. Results: We found higher levels of differentiation among clawed lobsters than crawfish, both globally and within basins, and demonstrate where known hydrographic and topographic barriers generate shared patterns of divergence, such as a genetic break between the Atlantic and Mediterranean basins. Genetic structure not common to both species is principally apparent in the Atlantic portions of their range, where clawed lobster exhibits a genetic cline and increased differentiation towards range margins, while crawfish appear effectively panmictic throughout this region. Main Conclusions: We attribute the comparative lack of crawfish population structuring to their greater dispersal tendencies via a longer pelagic larval duration and sporadic adult movements. In contrast, genetic connectivity in clawed lobster is relatively restricted, with the correlation of site of origin and temperature to geographical heterogeneity at many divergent loci indicative of both neutral and adaptive processes. Our results help inform how contemporary management can account for likely demographic connectivity and marry the conservation of genomic variation with sustainable fisheries in these ecologically and economically important crustaceans.
- Exposure to the insecticide sulfoxaflor affects behaviour and biomarkers responses of Carcinus maenas (Crustacea: Decapoda)Publication . Damasceno, Jadilson M.; Rato, Lénia D.; Simões, Tiago; Morão, Inês F. C.; Meireles, Gabriela; Novais, Sara C.; Lemos, Marco F.L.Sulfoxaflor is an insecticide belonging to the recent sulfoximine class, acting as a nicotinic acetylcholine receptor (nAChRs) agonist. There are few studies regarding sulfoxaflor’s toxicity to non-target organisms. The present study aimed to investigate the acute and sub-lethal effects of sulfoxaflor on Carcinus maenas by addressing survival, behaviour (feed intake and motricity), and neuromuscular, detoxification and oxidative stress, and energy metabolism biomarkers. Adult male green crabs were exposed to sulfoxaflor for 96 h and an LC50 of 2.88 mg L1 was estimated. All biomarker endpoints were sampled after three (T3) and seven (T7) days of exposure and behavioural endpoints were addressed at T3 and day six (T6). Sulfoxaflor affected the feed intake and motricity of C. maenas at T6. From the integrated analysis of endpoints, with the increase in concentrations of sulfoxaflor, after seven days, one can notice a lower detoxification capacity (lower GST), higher LPO levels and effects on behaviour (higher motricity effects and lower feed intake). This integrated approach proved to be valuable in understanding the negative impacts of sulfoxaflor on green crabs, while contributing to the knowledge of this pesticide toxicity to non-target coastal invertebrates.