Repository logo
 
Publication

Disease mapping models for data with weak spatial dependence or spatial discontinuities

dc.contributor.authorBaptista, Helena
dc.contributor.authorCongdon, Peter
dc.contributor.authorMendes, Jorge M.
dc.contributor.authorRodrigues, Ana M.
dc.contributor.authorCanhão, Helena
dc.contributor.authorDias, Sara Simões
dc.date.accessioned2021-04-22T09:41:56Z
dc.date.available2021-04-22T09:41:56Z
dc.date.issued2020-11-11
dc.description.abstractRecent advances in the spatial epidemiology literature have extended traditional approaches by including determinant disease factors that allow for non-local smoothing and/or non-spatial smoothing. In this article, two of those approaches are compared and are further extended to areas of high interest from the public health perspective. These are a conditionally specified Gaussian random field model, using a similaritybased non-spatial weight matrix to facilitate non-spatial smoothing in Bayesian disease mapping; and a spatially adaptive conditional autoregressive prior model.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.1515/em-2019-0025pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.8/5691
dc.language.isoengpt_PT
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectBayesian modellingpt_PT
dc.subjectBayesian modellingpt_PT
dc.subjectLimiting health problemspt_PT
dc.subjectSpatial epidemiologypt_PT
dc.subjectSimilarity-based and adaptive modelspt_PT
dc.titleDisease mapping models for data with weak spatial dependence or spatial discontinuitiespt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.issue1pt_PT
oaire.citation.titleEpidemiologic Methodspt_PT
oaire.citation.volume9pt_PT
person.familyNameDias
person.givenNameSara
person.identifier.ciencia-idAA1F-9375-B5E6
person.identifier.orcid0000-0001-6782-7481
person.identifier.ridI-9965-2018
person.identifier.scopus-author-id33367487300
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublicationa49e0bc6-cfea-4033-aebf-a1ef9e4c5e7b
relation.isAuthorOfPublication.latestForDiscoverya49e0bc6-cfea-4033-aebf-a1ef9e4c5e7b

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Disease_mapping_models_data_weak_spatial_dependence_spatial_discontinuities.pdf
Size:
3.4 MB
Format:
Adobe Portable Document Format
Description: