Repository logo
 
Loading...
Thumbnail Image
Publication

Recent Advances in Additive Biomanufacturing

Use this identifier to reference this record.
Name:Description:Size:Format: 
Recent Advances in Additive Biomanufacturing_abstract.pdfThe principles of tissue engineering and regenerative medicine have been used for the development of innovative medical therapies for engineering tissues and organs. These therapies involve the use of biomaterials, cells, and biologically active molecules, according to two fundamental strategies: the top-down and bottom-up approaches. Top-down approaches, which are the most commonly used, involve the implantation of porous scaffolds, with or without living cells and bioactive agents, into the defect site in the patient. In these approaches, scaffolds act as temporary templates for the seeded cells, mimicking the properties of the native extracellular matrix and providing an adequate environment for the growth of the new tissue. Scaffolds can be produced by using either conventional or additive techniques, resulting in structures with different levels of porosity, pore size, interconnectivity, and spatial distribution. Additive biomanufacturing techniques allow significantly more control over the scaffold characteristics (e.g., architecture, porosity, permeability, etc.), enabling the automatic and reproducible fabrication of scaffolds in a wide range of polymeric, ceramic, and composite materials. Some of these techniques also allow the fabrication of constructs encapsulating living cells. This chapter describes the most recent advances in the top-down approach to fabricate scaffolds for tissue regeneration, presenting the most important additive biomanufacturing techniques and processable materials. Future perspectives in the field and challenges for future research are also discussed.268.46 KBAdobe PDF Download

Advisor(s)

Abstract(s)

The principles of tissue engineering and regenerative medicine have been used for the development of innovative medical therapies for engineering tissues and organs. These therapies involve the use of biomaterials, cells, and biologically active molecules, according to two fundamental strategies: the top-down and bottom-up approaches. Top-down approaches, which are the most commonly used, involve the implantation of porous scaffolds, with or without living cells and bioactive agents, into the defect site in the patient. In these approaches, scaffolds act as temporary templates for the seeded cells, mimicking the properties of the native extracellular matrix and providing an adequate environment for the growth of the new tissue. Scaffolds can be produced by using either conventional or additive techniques, resulting in structures with different levels of porosity, pore size, interconnectivity, and spatial distribution. Additive biomanufacturing techniques allow significantly more control over the scaffold characteristics (e.g., architecture, porosity, permeability, etc.), enabling the automatic and reproducible fabrication of scaffolds in a wide range of polymeric, ceramic, and composite materials. Some of these techniques also allow the fabrication of constructs encapsulating living cells. This chapter describes the most recent advances in the top-down approach to fabricate scaffolds for tissue regeneration, presenting the most important additive biomanufacturing techniques and processable materials. Future perspectives in the field and challenges for future research are also discussed.

Description

Disponível apenas o Abstract (colocado em Open Access).

Keywords

Additive biomanufacturing Extrusion-based processes In situ biomanufacturing Inkjet printing processes Scaffold Selective laser sintering Tissue engineering Top-down approach Vat photopolymerization

Pedagogical Context

Citation

R.F. Pereira, P.J. Bártolo, 10.10 - Recent Advances in Additive Biomanufacturing, Editor(s): Saleem Hashmi, Gilmar Ferreira Batalha, Chester J. Van Tyne, Bekir Yilbas, Comprehensive Materials Processing, Elsevier, 2014, Pages 265-284, ISBN 9780080965338, https://doi.org/10.1016/B978-0-08-096532-1.01009-8.

Research Projects

Organizational Units

Journal Issue

Publisher

Elsevier

CC License

Without CC licence

Altmetrics