Logo do repositório
 
A carregar...
Miniatura
Publicação

Fundamental Solution for Natural Powers of the Fractional Laplace and Dirac Operators in the Riemann–Liouville Sense

Utilize este identificador para referenciar este registo.
Nome:Descrição:Tamanho:Formato: 
Fundamental Solution for Natural Powers of the Fractional Laplace and Dirac Operators in the Riemann–Liouville Sense.pdfIn this paper, we study the fundamental solution of natural powers of the n-parameter fractional Laplace and Dirac operators defined via Riemann–Liouville fractional derivatives. To do this we use iteration through the fractional Poisson equation starting from the fundamental solutions of the fractional Laplace Δa+α and Dirac Da+α operators, admitting a summable fractional derivative. The family of fundamental solutions of the corresponding natural powers of fractional Laplace and Dirac operators are expressed in operator form using the Mittag–Leffler function.434.9 KBAdobe PDF Ver/Abrir

Orientador(es)

Resumo(s)

In this paper, we study the fundamental solution of natural powers of the n-parameter fractional Laplace and Dirac operators defined via Riemann–Liouville fractional derivatives. To do this we use iteration through the fractional Poisson equation starting from the fundamental solutions of the fractional Laplace Δa+α and Dirac Da+α operators, admitting a summable fractional derivative. The family of fundamental solutions of the corresponding natural powers of fractional Laplace and Dirac operators are expressed in operator form using the Mittag–Leffler function.

Descrição

Palavras-chave

Fractional Clifford analysis Fractional derivatives Fundamental solution Poisson’s equation Laplace transform

Contexto Educativo

Citação

Teodoro, A.D., Ferreira, M. & Vieira, N. Fundamental Solution for Natural Powers of the Fractional Laplace and Dirac Operators in the Riemann–Liouville Sense. Adv. Appl. Clifford Algebras 30, 3 (2020). https://doi.org/10.1007/s00006-019-1029-1.

Projetos de investigação

Unidades organizacionais

Fascículo

Editora

Springer Nature

Licença CC

Métricas Alternativas