Publication
Fundamental Solution for Natural Powers of the Fractional Laplace and Dirac Operators in the Riemann–Liouville Sense
datacite.subject.fos | Ciências Naturais::Matemáticas | |
dc.contributor.author | Teodoro, A. Di | |
dc.contributor.author | Ferreira, M. | |
dc.contributor.author | Vieira, N. | |
dc.date.accessioned | 2025-10-06T15:02:13Z | |
dc.date.available | 2025-10-06T15:02:13Z | |
dc.date.issued | 2019-11-10 | |
dc.description.abstract | In this paper, we study the fundamental solution of natural powers of the n-parameter fractional Laplace and Dirac operators defined via Riemann–Liouville fractional derivatives. To do this we use iteration through the fractional Poisson equation starting from the fundamental solutions of the fractional Laplace Δa+α and Dirac Da+α operators, admitting a summable fractional derivative. The family of fundamental solutions of the corresponding natural powers of fractional Laplace and Dirac operators are expressed in operator form using the Mittag–Leffler function. | eng |
dc.description.sponsorship | A. Di Teodoro was supported by Colegio de Ciencias e Ingenierías de la Universidad San Francisco de Quito. The work of M. Ferreira and N. Vieira was supported by Portuguese funds through CIDMA-Center for Research and Development in Mathematics and Applications, and FCT–Fundação para a Ciência e a Tecnologia, within project UID/MAT/04106/2019. N. Vieira was also supported by FCT via the FCT Researcher Program 2014 (Ref: IF/00271/2014). | |
dc.identifier.citation | Teodoro, A.D., Ferreira, M. & Vieira, N. Fundamental Solution for Natural Powers of the Fractional Laplace and Dirac Operators in the Riemann–Liouville Sense. Adv. Appl. Clifford Algebras 30, 3 (2020). https://doi.org/10.1007/s00006-019-1029-1. | |
dc.identifier.doi | 10.1007/s00006-019-1029-1 | |
dc.identifier.issn | 0188-7009 | |
dc.identifier.uri | http://hdl.handle.net/10400.8/14212 | |
dc.language.iso | eng | |
dc.peerreviewed | yes | |
dc.publisher | Springer Nature | |
dc.relation | Center for Research and Development in Mathematics and Applications | |
dc.relation.hasversion | https://link.springer.com/article/10.1007/s00006-019-1029-1 | |
dc.relation.ispartof | Advances in Applied Clifford Algebras | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.subject | Fractional Clifford analysis | |
dc.subject | Fractional derivatives | |
dc.subject | Fundamental solution | |
dc.subject | Poisson’s equation | |
dc.subject | Laplace transform | |
dc.title | Fundamental Solution for Natural Powers of the Fractional Laplace and Dirac Operators in the Riemann–Liouville Sense | eng |
dc.type | journal article | |
dspace.entity.type | Publication | |
oaire.awardTitle | Center for Research and Development in Mathematics and Applications | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UID%2FMAT%2F04106%2F2019/PT | |
oaire.citation.endPage | 18 | |
oaire.citation.startPage | 1 | |
oaire.citation.title | Advances in Applied Clifford Algebras | |
oaire.citation.volume | 30 | |
oaire.fundingStream | 6817 - DCRRNI ID | |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
person.familyName | Ferreira | |
person.givenName | Milton | |
person.identifier.ciencia-id | CA19-2009-F26D | |
person.identifier.orcid | 0000-0003-1816-8293 | |
person.identifier.rid | A-2004-2015 | |
person.identifier.scopus-author-id | 12144179800 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
relation.isAuthorOfPublication | b1460cdc-4ced-46c6-a637-68b425d104dc | |
relation.isAuthorOfPublication.latestForDiscovery | b1460cdc-4ced-46c6-a637-68b425d104dc | |
relation.isProjectOfPublication | 42ba4b66-8473-451e-88db-8598484579a8 | |
relation.isProjectOfPublication.latestForDiscovery | 42ba4b66-8473-451e-88db-8598484579a8 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Fundamental Solution for Natural Powers of the Fractional Laplace and Dirac Operators in the Riemann–Liouville Sense.pdf
- Size:
- 434.9 KB
- Format:
- Adobe Portable Document Format
- Description:
- In this paper, we study the fundamental solution of natural powers of the n-parameter fractional Laplace and Dirac operators defined via Riemann–Liouville fractional derivatives. To do this we use iteration through the fractional Poisson equation starting from the fundamental solutions of the fractional Laplace Δa+α and Dirac Da+α operators, admitting a summable fractional derivative. The family of fundamental solutions of the corresponding natural powers of fractional Laplace and Dirac operators are expressed in operator form using the Mittag–Leffler function.
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.32 KB
- Format:
- Item-specific license agreed upon to submission
- Description: