Logo do repositório
 
A carregar...
Logótipo do projeto
Projeto de investigação

Multimaterial microstereo-thermal-lithography (μSTLG)

Financiador

Autores

Publicações

Photocrosslinkable Materials for the Fabrication of Tissue-Engineered Constructs by Stereolithography
Publication . Pereira, Rúben F.; Bártolo, Paulo J.
Stereolithography is an additive technique that produces three-dimensional (3D) solid objects using a multi-layer procedure through the selective photoinitiated curing reaction of a liquid photosensitive material. Stereolithographic processes have been widely employed in Tissue Engineering for the fabrication of temporary constructs, using natural and synthetic polymers, and polymer-ceramic composites. These processes allow the fabrication of complex structures with a high accuracy and precision at physiological temperatures, incorporating cells and growth factors without significant damage or denaturation. Despite recent advances on the development of novel biomaterials and biocompatible crosslinking agents, the main limitation of these techniques are the lack number of available photocrosslinkable materials, exhibiting appropriate biocompatibility and biodegradability. This chapter gives an overview of the current state-of-art of materials and stereolithographic techniques to produce constructs for tissue regeneration, outlining challenges for future research.
Thermo-kinetic curing model for stereolithographic applications
Publication . Bártolo, Paulo
A thermal-kinetic model, using the finite element method to study, simulate and optimise stereolithography, is presented in this paper. The model, which is theoretically rigorous and practical in its implementation, describes both the heat transfer effects and the course of the chemical reaction. This model includes the effects of photo-initiator concentration, temperature and light intensity, predicting the diffusion-controlled effects that occur after vitrification, the phenomenon of unimolecular termination and the shrinkage effects. Light intensity values at the resin surface are defined by assuming an appropriated Gaussian intensity distribution. The Beer-Lambert law enables to describe the decrease in light intensity with depth. The non-linear variation of the glass transition temperature with fractional conversion can be determined and consequently the mechanical behaviour of the resin sample predicted.

Unidades organizacionais

Descrição

Palavras-chave

Stereolitography,Micro-manufacturing,Photopolymerisation,Rapid prototyping, Engineering and technology ,Engineering and technology/Materials engineering

Contribuidores

Financiadores

Entidade financiadora

Fundação para a Ciência e a Tecnologia, I.P.
Fundação para a Ciência e a Tecnologia, I.P.

Programa de financiamento

5876-PPCDTI
Concurso para Projectos de I&D em todos os Domínios Científicos - 2008

Número da atribuição

PTDC/EME-PME/098037/2008

ID