Repository logo
 
Loading...
Project Logo
Research Project

Applied Molecular Biosciences Unit

Authors

Publications

Seasonal evaluation of Pholorotannin-Enriched extracts from brown macroalgae Fucus spiralis
Publication . Almeida, Belén; Barroso, Sonia; Ferreira, Ana S. D.; Adão, Pedro; Mendes, Susana; Gil, Maria M.
Fucus spiralis that was collected in the four seasons was submitted to an extraction with ethanol:water (crude extracts Et80), followed by a liquid–liquid fractionation with organic solvents (fraction He from n-hexane; aqueous fractions AQ1, AQ2, AQ3 and AQ4; ethyl acetate fraction EA), with the aim of obtaining phlorotannin-enriched extracts. All the extracts (Et80, He, AQ1, AQ2, AQ3, AQ4 and EA) that were obtained for the F. spiralis of the four seasons were evaluated for their antioxidant capacity and total phenolic compounds. The summer extracts presented the highest contents in polyphenols (TPC), as well as the highest ferric reducing antioxidant power (FRAP), when compared to the samples from the other seasons. The reductive percentage of the DPPH (2,2-diphenyl-1-picryl-hydrazyl-hydrate) compound was similar between the seasons. For all the seasons, the EA extract showed the highest polyphenol content (TPC), and the highest antioxidant capacity (highest ferric reducing power (FRAP) and lowest concentration needed to reduce 50% of the DPPH compound), which is in agreement with a phlorotannin-enriched fraction. This study revealed that the polyphenol content and antioxidant power of the F. spiralis extracts are influenced by the time of harvest, as well as by the solvents used for their extraction.
Registered human trials addressing environmental and occupational toxicant exposures: Scoping review of immunological markers and protective strategies
Publication . Marques da Silva, Dorinda; Videira, Paula Alexandra; Lagoa, Ricardo
Exposure to pollution is a worldwide societal challenge participating in the etiology and progression of different diseases. However, the scarce information hinders our understanding of the actual level of human exposure and its specific effects. Inadequate and excessive immune responses underlie diverse chronic diseases. Yet, it is unclear which and how toxicant exposures affect the immune system functions. There is a multiplicity of immunological outcomes and biomarkers being studied in human trials related to exposure to different toxicants but still without clear evidence of their value as biomarkers of exposure or effect. The main aim of this study was to collect scientific evidence and identify relevant immunological biomarkers used at the clinical level for toxicant exposures. We used the platform clinical trials.gov as a database tool. First, we performed a search combining research items related to toxicants and immunological parameters. The resulting117 clinical trials were examined for immune-related outcomes and specific biomarkers evaluated in subjects exposed to occupational and environmental toxicants. After categorization, relevant immunological outcomes and biomarkers were identified related to systemic and airway inflammation, modulation of immune cells, allergy and autoimmunity. In general, the immune markers related to inflammation are more frequently investigated for exposure to pollutants, namely IL-6, C-reactive protein (CRP) and nitric oxide (NO). Nevertheless, the data also indicated that prospective biomarkers of effect are gaining ground and a guiding representation of the established and novel biomarkers is suggested for upcoming trials. Finally, potential protective strategies to mitigate the adverse effects of specific toxicants are underlined for future studies.
Bioremediation of Synthetic Wastewater with Contaminants of Emerging Concern by Nannochloropsis sp. and Lipid Production: A Circular Approach
Publication . Santos, Bruna; Araújo, Juliana; Carvalho, Beatriz; Cotrim, Carolina; Bernardino, Raul; Freitas, Filomena; Sobral, Abílio J. F. N.; Encarnação, Telma
Contaminants of emerging concern (CECs) pose a potential risk to human and environmental health. Microalgae bioremediation is a promising approach for transforming or removing contaminants from the environment, while contributing to the circular economy. In this study, Nannochloropsis sp. was effectively used for the simultaneous removal of six CECs: paracetamol, ibuprofen, imidacloprid, methylparaben and bisphenol A at 10 µg mL−1 and triclosan at 0.5 µg mL−1 from synthetic wastewater, which were able to survive under such concentrations, higher than those commonly found in the environment (up to 2.82 µg mL−1 of methylparaben). High removal efficiencies were reached for methylparaben (100%) and bisphenol A (93 ± 2%), while for imidacloprid, paracetamol and ibuprofen, 30 ± 1%, 64 ± 2% and 49 ± 5% were removed, respectively. Subsequently, lipids were extracted, and the FAME profile was characterised using GS-MS. The main fatty acids identified after bioremediation were hexadecadienoic acid isomers (C16:2), palmitic acid (C16), linoleic acid (C18:2) and γ-linolenic acid (C18:3). The absence of oleic acid and stearic acid was noticed, suggesting an alteration in the lipidic profile due to contaminant exposure. By exploring the quantification of fatty acids in future work, potential applications for the extracted lipids can be explored, further demonstrating the feasibility of this circular process.

Organizational Units

Description

Keywords

Contributors

Funders

Funding agency

Fundação para a Ciência e a Tecnologia

Funding programme

6817 - DCRRNI ID

Funding Award Number

UIDP/04378/2020

ID