Repository logo
 

Search Results

Now showing 1 - 3 of 3
  • International Conference on Progress in Digital and Physical Manufacturing ProDPM'19 - Book of Abstracts
    Publication . Almeida, Henrique; Vasco, Joel; Marto, Anabela; Capela, Carlos; Freitas, Dino; Craveiro, Flávio; Bártolo, Helena; Coelho, Luís; Correia, Mário; Vieira, Milena; Ruben, Rui
    The “Progress in Digital and Physical Manufacturing” book contains keynotes and papers presented at the first International Conference on Progress in Digital and Physical Manufacturing (ProDPM'19), organized by the School of Technology and Management (ESTG) of the Polytechnic Institute of Leiria (IPLeiria), from the 2nd to the 4th of October 2019. This international conference aims to provide a major international forum for the scientific exchange of multi-disciplinary and inter-organisational aspects performed by academics, researchers and industrial partners in order to exchange ideas in the field of digital and physical manufacturing and related areas. It represents a significant contribution to the current advances in industrial digital and physical manufacturing issues as it contains topical research in this field. The ProDPM'19 conference expects to foster networking and collaboration among participants to advance the knowledge and identify major trends in the field. The conference addresses to industrial challenges focused on current market demands and actual technological trends, such as mass customization, new business and industrial models or predictive engineering. Its contribution in science and technology developments leads to more suitable, effective and efficient products, materials and processes, generating added-value for the Industry and promoting the awareness of the role and importance of the digital and physical manufacturing development in the society. This book is, therefore, an essential reading for all of those working on digital and physical manufacturing, promoting better links between the academia and the industry. The conference papers will cover a wide range of important topics like additive manufacturing, biomanufacturing, advanced and smart manufacturing technologies, rapid tooling, microfabrication, virtual environments, simulation and 3D CAD and data acquisition, materials and collaborative design.
  • Thermo-rheological behaviour of polymer melts in microinjection moulding
    Publication . Vasco, Joel; Maia, J.M.; Pouzada, A.S.
    Microinjection has proven to be one of the most efficient replication methods for microcomponents and microsystems in various domains of microengineering. The use of available commercial microinjection equipment to evaluate the polymeric flow in microchannels would surely contribute to enhancing knowledge on polymeric flow at the microscale under industrial conditions. This approach is appropriate since rheological phenomena such as wall slip, surface tension, melt pressure drop and polymer flow length can be studied. These aspects are not fully dealt with in current commercial simulation software packages. In this study a micromould was designed to assess and characterize the flow in microchannels under realistic industrial conditions.
  • DMLS technology for automotive tooling
    Publication . Leal, R.; Barreiros, Fatima; Alves, M.L.; Romeiro, F.; Vasco, J.; Santos, M.; Marto, C.
    The automotive industry is challenged every day, with companies competing and developing new models and facelifts in short term, requiring new tools or tool reshaping. Concerning the current world economic scenario, decreasing time-for-tooling becomes as important as decreasing time-to-market. Such scenario opens up the horizons for new manufacturing approaches like additive manufacturing. In this case-study, additive manufacturing is applied for tooling up a stamping process for the production of body panels for the automotive industry. This approach enables the manufacturing of stamping tool inserts with similar high performance alloy steel as in conventional tooling, although, without any loss of tool properties and saving a significant part of the tool manufacturing time. The evaluation of the tool performance and tool life estimation was carried out based on three point bending fatigue tests using specimens manufactured by the same additive process and using the same powder material. From these data, it was possible to establish realistic scenarios for the use of additive tooling and to evaluate its feasibility on the automotive industry.