Repository logo
 
Loading...
Profile Picture
Person

Jeremias Cardinha do Maio Calado, Maria da Luz

Search Results

Now showing 1 - 2 of 2
  • Marine endophytic fungi associated with Halopteris scoparia (Linnaeus) Sauvageau as producers of bioactive secondary metabolites with potential dermocosmetic application
    Publication . Calado, Maria da Luz; Silva, Joana; Alves, Celso; Susano, Patrícia; Santos, Débora; Alves, Joana; Martins, Alice; Gaspar, Helena; Pedrosa, Rui; Campos, Maria Jorge
    Marine fungi and, particularly, endophytic species have been recognised as one of the most prolific sources of structurally new and diverse bioactive secondary metabolites with multiple biotechnological applications. Despite the increasing number of bioprospecting studies, very few have already evaluated the cosmeceutical potential of marine fungal compounds. Thus, this study focused on a frequent seaweed in the Portuguese coast, Halopteris scoparia, to identify the endophytic marine fungi associated with this host, and assess their ability to biosynthesise secondary metabolites with antioxidative, enzymatic inhibitory (hyaluronidase, collagenase, elastase and tyrosinase), anti-inflammatory, photoprotective, and antimicrobial (Cutibacterium acnes, Staphylococcus epidermidis and Malassezia furfur) activities. The results revealed eight fungal taxa included in the Ascomycota, and in the most representative taxonomic classes in marine ecosystems (Eurotiomycetes, Sordariomycetes and Dothideomycetes). These fungi were reported for the first time in Portugal and in association with H. scoparia, as far as it is known. The screening analyses showed that most of these endophytic fungi were producers of compounds with relevant biological activities, though those biosynthesised by Penicillium sect. Exilicaulis and Aspergillus chevalieri proved to be the most promising ones for being further exploited by dermocosmetic industry. The chemical analysis of the crude extract from an isolate of A. chevalieri revealed the presence of two bioactive compounds, echinulin and neoechinulin A, which might explain the high antioxidant and UV photoprotective capacities exhibited by the extract. These noteworthy results emphasised the importance of screening the secondary metabolites produced by these marine endophytic fungal strains for other potential bioactivities, and the relevance of investing more efforts in understanding the ecology of halo/osmotolerant fungi.
  • Potential roles of marine fungi in the decomposition process of standing stems and leaves of Spartina maritima
    Publication . Calado, Maria da Luz; Carvalho, Luís; Barata, Margarida; Pang, Ka-Lai
    Fungal communities inhabiting live, senescent, and decaying leaf sheaths, stems, and leaf blades of standing plants of Spartina maritima in two Portuguese salt marshes were assessed by morphological identification of fruiting structures and sequence-based identification based on polymerase chain reaction (PCR)-cloning analysis of the internal transcribed spacer (ITS) rDNA. The molecular method enabled identification of infrequent ascomycetes and basidiomycetes (filamentous and yeasts) and the asexual morph of Byssothecium obiones and Phaeosphaeria halima. The occurrence and ecological role of the most frequent fungi on different S. maritima substrates seem to depend on the phase of plant life cycle, and specifically on the availability and microenvironmental conditions of each plant substrate. Specifically, By. obiones, Natantispora retorquens, and Lulworthia sp. 1 were involved in the decay of lower-middle culms, Buergenerula spartinae of middle culms and leaves, P. halima, Phaeosphaeria spartinicola, and Stagonospora sp. 1 of middle-upper leaves, and Mycosphaerella sp. I of upper leaves of early-decaying S. maritima plants. The presence of these fungi on live vegetative structures suggests that they might begin the colonization process as endophytes, gaining a competitive advantage over the other saprobic fungi on the plants.