Loading...
5 results
Search Results
Now showing 1 - 5 of 5
- Marine macroalgae, a source of natural inhibitors of Fungal PhytopathogensPublication . Vicente, Tânia F. L.; Lemos, Marco F.L.; Valentão, Patrícia; Félix, Rafael; Félix, CarinaFungal phytopathogens are a growing problem all over the world; their propagation causes significant crop losses, affecting the quality of fruits and vegetables, diminishing the availability of food, leading to the loss of billions of euros every year. To control fungal diseases, the use of synthetic chemical fungicides is widely applied; these substances are, however, environmentally damaging. Marine algae, one of the richest marine sources of compounds possessing a wide range of bioactivities, present an eco-friendly alternative in the search for diverse compounds with industrial applications. The synthesis of such bioactive compounds has been recognized as part of microalgal responsiveness to stress conditions, resulting in the production of polyphenols, polysaccharides, lipophilic compounds, and terpenoids, including halogenated compounds, already described as antimicrobial agents. Furthermore, many studies, in vitro or in planta, have demonstrated the inhibitory activity of these compounds with respect to fungal phytopathogens. This review aims to gather the maximum of information addressing macroalgae extracts with potential inhibition against fungal phytopathogens, including the best inhibitory results, while presenting some already reported mechanisms of action.
- Cosmeceutical potential of grateloupia turuturu: using low-cost extraction methodologies to obtain added-value extractsPublication . Félix, Carina; Félix, Rafael; Carmona, Ana M.; Januário, Adriana P.; Dias, Pedro D.M.; Vicente, Tânia F. L.; Silva, Joana; Alves, Celso; Pedrosa, Rui; Novais, Sara C.; Lemos, Marco F.L.The invasive macroalga Grateloupia turuturu is known to contain a diversity of bioactive compounds with different potentialities. Among them are compounds with relevant bioactivities for cosmetics. Considering this, this study aimed to screen bioactivities with cosmeceutical potential, namely, antioxidant, UV absorbance, anti-enzymatic, antimicrobial, and anti-inflammatory activities, as well as photoprotection potential. Extractions with higher concentrations of ethanol resulted in extracts with higher antioxidant activities, while for the anti-enzymatic activity, high inhibition percentages were obtained for elastase and hyaluronidase with almost all extracts. Regarding the antimicrobial activity, all extracts showed to be active against E. coli, S. aureus, and C. albicans. Extracts produced with higher percentages of ethanol were more effective against E. coli and with lower percentages against the other two microorganisms. Several concentrations of each extract were found to be safe for fibroblasts, but no photoprotection capacity was observed. However, one of the aqueous extracts was responsible for reducing around 40% of the nitric oxide production on macrophages, showing its anti-inflammatory potential. This work highlights G. turuturu’s potential in the cosmeceutical field, contributing to the further development of natural formulations for skin protection.
- Seaweed as a natural source against phytopathogenic bacteriaPublication . Vicente, Tânia F.L.; Félix, Carina; Félix, Rafael; Valentão, Patrícia; Lemos, Marco F.L.Plant bacterial pathogens can be devastating and compromise entire crops of fruit and vegetables worldwide. The consequences of bacterial plant infections represent not only relevant economical losses, but also the reduction of food availability. Synthetic bactericides have been the most used tool to control bacterial diseases, representing an expensive investment for the producers, since cyclic applications are usually necessary, and are a potential threat to the environment. The development of greener methodologies is of paramount importance, and some options are already available in the market, usually related to genetic manipulation or plant community modulation, as in the case of biocontrol. Seaweeds are one of the richest sources of bioactive compounds, already being used in different industries such as cosmetics, food, medicine, pharmaceutical investigation, and agriculture, among others. They also arise as an eco-friendly alternative to synthetic bactericides. Several studies have already demonstrated their inhibitory activity over relevant bacterial phytopathogens, some of these compounds are known for their eliciting ability to trigger priming defense mechanisms. The present work aims to gather the available information regarding seaweed extracts/compounds with antibacterial activity and eliciting potential to control bacterial phytopathogens, highlighting the extracts from brown algae with protective properties against microbial attack.
- Seaweed extracts to control postharvest phytopathogenic fungi in Rocha pearPublication . Toledo, Eloísa; Félix, Carina; Vicente, Tânia F. L.; Augusto, Ana; Félix, Rafael; Toledo, Bernardo; Silva, Joana; Trindade, Carina; Raimundo, Délio; Lemos, Marco F.L.Fungal infections cause losses amounting to between 20 and 25% of the fruit industry’s total outcome, with an escalating impact on agriculture in the last decades. As seaweeds have long demonstrated relevant antimicrobial properties against a wide variety of microorganisms, extracts from Asparagopsis armata, Codium sp., Fucus vesiculosus, and Sargassum muticum were used to find sustainable, ecofriendly, and safe solutions against Rocha pear postharvest fungal infections. Alternaria alternata, Botrytis cinerea, Fusarium oxysporum, and Penicillium expansum mycelial growth and spore germination inhibition activities were tested in vitro with five different extracts of each seaweed (n-hexane, ethyl acetate, aqueous, ethanolic, and hydroethanolic). An in vivo assay was then performed using the aqueous extracts against B. cinerea and F. oxysporum in Rocha pear. The n-hexane, ethyl acetate, and ethanolic extracts from A. armata showed the best in vitro inhibitory activity against B. cinerea, F. oxysporum, and P. expansum, and promising in vivo results against B. cinerea using S. muticum aqueous extract were also found. The present work highlights the contribution of seaweeds to tackle agricultural problems, namely postharvest phytopathogenic fungal diseases, contributing to a greener and more sustainable bioeconomy from the sea to the farm.
- Uncovering the bioactivity of Aurantiochytrium sp.: a comparison of extraction methodologiesPublication . Reboleira, João; Félix, Rafael; Vicente, Tânia F. L.; Januário, Adriana P.; Félix, Carina; Melo, Marcelo M.R. de; Silva, Carlos M.; Ribeiro, Ana C.; Saraiva, Jorge A.; Bandarra, Narcisa M.; Sapatinha, Maria; Paulo, Maria C.; Coutinho, Joana; Lemos, Marco F.L.Aurantiochytrium sp. is an emerging alternative source of polyunsaturated fatty acids (PUFAs), docosahexaenoic acid (DHA), and squalene, playing an important role in the phasing out of traditional fish sources for these compounds. Novel lipid extraction techniques with a focus on sustainability and low environmental footprint are being developed for this organism, but the exploration of other added-value compounds within it is still very limited. In this work, a combination of novel green extraction techniques (high hydrostatic pressure extraction (HPE) and supercritical fluid extraction (SFE)) and traditional techniques (organic solvent Soxhlet extraction and hydrodistillation (HD)) was used to obtain lipophilic extracts of Aurantiochytrium sp., which were then screened for antioxidant (DPPH radical reduction capacity and ferric-reducing antioxidant potential (FRAP) assays), lipid oxidation protection, antimicrobial, anti-aging enzyme inhibition (collagenase, elastase and hyaluronidase), and anti-inflammatory (inhibition of NO production) activities. The screening revealed promising extracts in nearly all categories of biological activity tested, with only the enzymatic inhibition being low in all extracts. Powerful lipid oxidation protection and anti-inflammatory activity were observed in most SFE samples. Ethanolic HPEs inhibited both lipid oxidation reactions and microbial growth. The HD extract demonstrated high antioxidant, antimicrobial, and antiinflammatory activities making, it a major contender for further studies aiming at the valorization of Aurantiochytrium sp. Taken together, this study presents compelling evidence of the bioactive potential of Aurantiochytrium sp. and encourages further exploration of its composition and application.