Loading...
2 results
Search Results
Now showing 1 - 2 of 2
- Kelp carbon sink potential decreases with warming due to accelerating decompositionPublication . Filbee-Dexter, Karen; Feehan, Colette J.; Smale, Dan A.; Krumhansi, Kira A.; Augustine, Skye; De Bettignies, Florian; Burrows, Michael T.; Byrnes, Jarrett E.K.; Campbell, Jillian; Davoult, Dominique; Dunton, Kenneth H.; Franco, Joao N.; Garrido, Ignacio; Grace, Sean P.; Hancke, Kasper; Johnson, Ladd E.; Konar, Brenda; Moore, Pippa J.; Norderhaug, Kjell Magnus; O'Dell, Alasdair; Pedersen, Morten F.; Salomon, Anne K.; Sousa-Pinto, Isabel; Tiegs, Scott; Yiu, Dara; Wernberg, ThomasCycling of organic carbon in the ocean has the potential to mitigate or exacerbate global climate change, but major questions remain about the environmental controls on organic carbon flux in the coastal zone. Here, we used a field experiment distributed across 28° of latitude, and the entire range of 2 dominant kelp species in the northern hemisphere, to measure decomposition rates of kelp detritus on the seafloor in relation to local environmental factors. Detritus decomposition in both species were strongly related to ocean temperature and initial carbon content, with higher rates of biomass loss at lower latitudes with warmer temperatures. Our experiment showed slow overall decomposition and turnover of kelp detritus and modeling of coastal residence times at our study sites revealed that a significant portion of this production can remain intact long enough to reach deep marine sinks. The results suggest that decomposition of these kelp species could accelerate with ocean warming and that low-latitude kelp forests could experience the greatest increase in remineralization with a 9% to 42% reduced potential for transport to long-term ocean sinks under short-term (RCP4.5) and long-term (RCP8.5) warming scenarios. However, slow decomposition at high latitudes, where kelp abundance is predicted to expand, indicates potential for increasing kelp-carbon sinks in cooler (northern) regions. Our findings reveal an important latitudinal gradient in coastal ecosystem function that provides an improved capacity to predict the implications of ocean warming on carbon cycling. Broad-scale patterns in organic carbon decomposition revealed here can be used to identify hotspots of carbon sequestration potential and resolve relationships between carbon cycling processes and ocean climate at a global scale.
- Niche and neutral assembly mechanisms contribute to latitudinal diversity gradients in reef fishesPublication . Bosch, Nestor E.; Wernberg, Thomas; Langlois, Tim J.; Smale, Dan A.; Moore, Pippa J.; Franco, João N.; Thiriet, Pierre; Feunteun, Eric; Ribeiro, Cláudia; Neves, Pedro; Freitas, Rui; Filbee-Dexter, Karen; Norderhaug, Kjell Magnus; Garcia, Alvaro; Otero-Ferrer, Francisco; Espino, Fernando; Haroun, Ricardo; Lazzari, Natali; Tuya, FernandoAim: The influence of niche and neutral mechanisms on the assembly of ecological communities have long been debated. However, we still have a limited knowledge on their relative importance to explain patterns of diversity across latitudinal gradients (LDG). Here, we investigate the extent to which these ecological mechanisms contribute to the LDG of reef fishes. Location: Eastern Atlantic Ocean. Taxon: Reef-associated ray-finned fishes. Methods: We combined abundance data across ~60° of latitude with functional trait data and phylogenetic trees. A null model approach was used to decouple the influence of taxonomic diversity (TD) on functional (FD) and phylogenetic (PD) diversity. Standardized effect sizes (SES FD and SES PD) were used to explore patterns of overdispersion, clustering and randomness. Information theoretic approaches were used to investigate the role of large-(temperature, geographic isolation, nitrate and net primary productivity) and local-scale (human population and depth) drivers. We further assessed the role of demographic stochasticity and its interaction with species trophic identity and dispersal capacity. Results: Taxonomic diversity peaked at ~15°–20° N, with a second mode of lower magnitude at ~45°N; a pattern that was predicted by temperature, geographic isolation and productivity. Tropical regions displayed a higher proportion of overdispersed assemblages, whilst clustering increased towards temperate regions. Phylogenetic and functional overdispersion were associated with warmer, productive and isolated regions. Demographic stochasticity also contributed largely to community assembly, independently of ecoregions, although variation was dependent on the trophic identity and body size of species. Main conclusions: Niche-based processes linking thermal and resource constraints to local coexistence mechanisms have contributed to the LDG in reef fishes. These processes do not act in isolation, stressing the importance of understanding interactions between deterministic and stochastic factors driving community structure in the face of rapid biodiversity change.