Loading...
2 results
Search Results
Now showing 1 - 2 of 2
- Different Chondrus crispus aquaculture methods and carrageenan extractionPublication . Tanoeiro, João Rui; Fortunato, Duarte; Cotas, João; Morais, Tiago; Afonso, Clélia; Pereira, LeonelWith the notable scarcity of Chondrus crispus on the Portuguese coast, and interest in exploiting compounds such as carrageenan, this study focuses on investigating different aquaculture methods and recording the yield of carrageenan from specimens grown by different methods. We compare the growth of Chondrus crispus in aquaculture using Free Floating, Cages, Attempted Fixation on Rock, and Fixed Line similar to Long Line. The best method was Free Floating where Nursery 0 had a 24-day Specific Growth Rate (SGR) of 2.08 ± 0.47%/day. The worst method in terms of growth was Nursery 2 (Attempted Fixation on Rock) where the SGR at 28 days was 0.33 ± 0.69%/day, and no fixation was observed. In terms of carrageenan extraction, all culture methods gave rise to biomass that had a lower extraction yield than wild specimens, at 50.95 ± 4.10%. However, the Free-Floating method from Nursery 1 showed an acceptable carrageenan content (31.43 ± 7.00%). Therefore, we demonstrate that the concept of C. crispus cultivation may be key to promoting the sustainability and stability of this species.
- Red seaweed pigments from a biotechnological perspectivePublication . Freitas, Marta V.; Pacheco, Diana; Cotas, João; Mouga, Teresa; Afonso, Clélia; Pereira, LeonelAlgae taxa are notably diverse regarding pigment diversity and composition, red seaweeds (Rhodophyta) being a valuable source of phycobiliproteins (phycoerythrins, phycocyanin, and allophycocyanin), carotenes (carotenoids and xanthophylls), and chlorophyll a. These pigments have a considerable biotechnological potential, which has been translated into several registered patents and commercial applications. However, challenges remain regarding the optimization and subsequent scale-up of extraction and purification methodologies, especially when considering the quality and quantity needs, from an industrial and commercial point of view. This review aims to provide the state-of-the-art information on each of the aforementioned groups of pigments that can be found within Rhodophyta. An outline of the chemical biodiversity within pigment groups, current extraction and purification methodologies and challenges, and an overview of commercially available products and registered patents, will be provided. Thus, the current biotechnological applications of red seaweeds pigments will be highlighted, from a sustainable and economical perspective, as well as their integration in the Blue Economy.