A carregar...
Pessoa
dos Santos Sousa Reis Faria, Tiago Filipe
2 resultados
Resultados da pesquisa
A mostrar 1 - 2 de 2
- 3D-printed teeth in endodontics: Why, how, problems and future: A narrative reviewPublication . Reis, Tiago; Barbosa, Cláudia; Franco, Margarida; Baptista, Catarina; Alves, Nuno; Castelo-Baz, Pablo; Martín-Cruces, José; Martin-Biedma, BenjaminThree-dimensional printing offers possibilities for the development of new models in endodontics. Numerous studies have used 3D-printed teeth; however, protocols for the standardization of studies still need to be developed. Another problem with 3D-printed teeth is the different areas of literature requested to understand the processes. This review aims to gather evidence about 3Dprinted teeth on the following aspects: (1) why they are advantageous; (2) how they are manufactured; (3) problems they present; and (4) future research topics. Natural teeth are still the standard practice in ex vivo studies and pre-clinical courses, but they have several drawbacks. Printed teeth may overcome all limitations of natural teeth. Printing technology relies on 3D data and post-processing tools to form a 3D model, ultimately generating a prototype using 3D printers. The major concerns with 3D-printed teeth are the resin hardness and printing accuracy of the canal anatomy. Guidance is presented for future studies to solve the problems of 3D-printed teeth and develop well-established protocols, for the standardization of methods to be achieved. In the future, 3D-printed teeth have the possibility to become the gold standard in ex vivo studies and endodontic training.
- Does Printing Orientation Matter in PolyJet 3D Printed Teeth for Endodontics? A Micro-CT AnalysisPublication . Barbosa, Cláudia; Reis, Tiago; Reis, José B.; Franco, Margarida; Batista, Catarina; Ruben, Rui B.; Martín-Biedma, Benjamín; Martín-Cruces, JoseThis study aimed to identify the optimal printing orientation (X, Y, or Z axis) and positioning of a mandibular molar presenting an isthmus using PolyJet™ technology. The influence of these parameters on dimensional accuracy and on the behavior of 3D-printed teeth (3DPT) during endodontic preparation with ProTaper Gold® system was evaluated. Six groups (XA, XB, YA, YB, ZA, ZB; n = 10) were printed with different axis orientations and distinct isthmus positions relative to the build platform. All samples underwent micro-computed tomography scanning before and after endodontic preparation. Regarding preoperative analyses—canal volume, centroids, and total tooth volume and area—no significant differences were found between groups XA–YA or XB–YB (p > 0.05), supporting their comparability. In contrast, groups ZA and ZB differed significantly from all others (p < 0.05), failing to meet equivalence required for further comparison, and were therefore excluded. Postoperative evaluation—volume change, centroid displacement, transportation, and unprepared areas—revealed no significant differences between XA–YA and XB–YB. Within the limitations of this study, both printing orientation and position affected the accuracy and repeatability of 3DPT, with positioning exerting the greatest influence, while their behavior towards endodontic preparation remained consistent across orientations.
