Unidade de Investigação - CDRsp – Centro para o Desenvolvimento Rápido e Sustentado de Produto
Permanent URI for this community
Browse
Browsing Unidade de Investigação - CDRsp – Centro para o Desenvolvimento Rápido e Sustentado de Produto by Sustainable Development Goals (SDG) "12:Produção e Consumo Sustentáveis"
Now showing 1 - 10 of 51
Results Per Page
Sort Options
- 316L stainless steel mechanical and tribological behavior—A comparison between selective laser melting, hot pressing and conventional castingPublication . Bartolomeu, F.; Buciumeanu, M.; Pinto, E.; Alves, Nuno; Carvalho, O.; Silva, F: S.; Miranda, G.This work presents a comprehensive study on the influence of three different processing technologies (Selective Laser Melting, Hot Pressing and conventional casting) on the microstructure, mechanical and wear behavior of an austenitic 316L Stainless Steel.Acorrelation between the processing technologies,the obtained microstructure and the mechanical and wear behavior was achieved. The results showed that the highest mechanical properties and tribological performance were obtained for 316L SS specimens produced by Selective Laser Melting, when compared to Hot Pressing and conventional casting. The high wear and mechanical performance of 316L Stainless Steel fabricated by Selective Laser Melting are mainly due to the finer microstructure, induced by the process. In this sense, Selective Laser Melting seems a promising method to fabricate customized 316L SS implants with improved mechanical and wear performance
- 3D printing of new biobased unsaturated polyesters by microstereo-thermal-lithographyPublication . Gonçalves, Filipa A. M. M.; Costa, Cátia S. M. F.; Fabela, Inês G. P.; Farinha, Dina; Faneca, Henrique; Simões, Pedro N.; Serra, Arménio C.; Bártolo, Paulo J.; Coelho, Jorge F. J.New micro three-dimensional (3D) scaffolds using biobased unsaturated polyesters (UPs) were prepared by microstereo-thermal-lithography (μSTLG). This advanced processing technique offers indubitable advantages over traditional printing methods. The accuracy and roughness of the 3D structures were evaluated by scanning electron microscopy and infinite focus microscopy, revealing a suitable roughness for cell attachment. UPs were synthesized by bulk polycondensation between biobased aliphatic diacids (succinic, adipic and sebacic acid) and two different glycols (propylene glycol and diethylene glycol) using fumaric acid as the source of double bonds. The chemical structures of the new oligomers were confirmed by proton nuclear magnetic resonance spectra, attenuated total reflectance Fourier transform infrared spectroscopy and matrix assisted laser desorption/ionization-time of flight mass spectrometry. The thermal and mechanical properties of the UPs were evaluated to determine the influence of the diacid/glycol ratio and the type of diacid in the polyester's properties. In addition an extensive thermal characterization of the polyesters is reported. The data presented in this work opens the possibility for the use of biobased polyesters in additive manufacturing technologies as a route to prepare biodegradable tailor made scaffolds that have potential applications in a tissue engineering area.
- 3D shape prior active contours for an automatic segmentation of a patient specific femur from a CT scanPublication . Almeida, D.; Folgado, J.; Fernandes, P.R.; Ruben, RuiThe following paper describes a novel approach to a medical image segmentation problem. The fully automated computational procedure receives as input images from CT scan exams of the human femur and returns a three dimensional representation of the bone. This patient specific iterative approach is based in 3D active contours without edges, implemented over a level set framework, on which the evolution of the contour depends on local image parameters which can easily be defined by the user but also on a priori information about the volume to segment. This joint approach will lead to an optimal solution convergence of the iterative method. The resulting point cloud can be an excellent starting point for a Finite Element mesh generation and analysis or the basis for a stereolitography for example.
- Additive manufactured porous biomaterials targeting orthopedic implants: A suitable combination of mechanical, physical and topological propertiesPublication . Bartolomeu, F.; Dourado, N.; Pereira, F.; Alves, N.; Miranda, G.; Silva, F. S.Orthopedic implants are under incessant advancement to improve their interactions with surrounding bone tissue aiming to ensure successful outcomes for patients. A successful biological interaction between implant and surrounding bone depends on the combination of mechanical, physical and topological properties. Hence, Ti6Al4V cellular structures appear as very promising solutions towards the improvement of conventional orthopedic implants. This work addresses a set of fundamental tools that allow improving the design of Ti6Al4V cellular structures produced by Selective Laser Melting (SLM). Three-point bending tests were carried out to estimate the elastic modulus of the produced structures. Morphological analysis allowed to evaluate the dimensional differences that were noticed between the model CAD and the SLM structures. Finite element models (adjusted CAD) were constructed with the experimentally obtained dimensions to replicate the mechanical response of the SLM structures. Linear correlations were systematically found for the dimensions of the SLM structures as a function of the designed model CAD dimensions. This has also been observed for the measured porosities as a function of the designed CAD models. This data can be used in further FE analyses as design guidelines to help engineers fabricating near-net-shape SLM Ti6Al4V cellular structures. Besides, polished and sandblasted surface treatments performed on the Ti6Al4V cellular structures allowed to obtain suitable properties regarding roughness and wettability when compared to as-produced surfaces. The capillarity tests showed that all the analyzed Ti6Al4V structures are able to transport fluid along its structure. The cell viability tests demonstrate Ti6Al4V cellular structures SLM produced did not release toxic substances to the medium, indicating that these structures can assure a suitable environment for cells to proliferate and attach. This study proposes a design methodology for Ti6Al4V cellular structures, that owe suitable mechanical properties but also provide a proper combination of porosity, roughness, wettability, capillarity and cell viability, all of them relevant for orthopedic applications. A Ti6Al4V cellular structured hip implant prototype gathering the suitable features addressed in this study was successfully SLM-produced.
- Bio-Materials and Prototyping Applications in MedicinePublication . Bártolo, Paulo Jorge; Bidanda, Bopaya; Bártolo, Paulo Jorge; Bidanda, BopayaThis second edition maintains a focus on integrated biomaterials, computer-aided design, and physical prototyping techniques as examples of the materials and applications that are found in medical environments. All original chapters, written by renowned experts in the field, have been updated along with the addition of four new chapters on: • Smart insoles • Medical applications of additive manufacturing • Additive manufacturing in craniofacial applications • Additive manufacturing in hearing aids This wide-ranging treatise on biomaterials and prototyping applications in medicine also focuses on solid freeform fabrication, rapid prototyping, layered manufacturing, and computer-aided design in the development of prosthetic devices. This book is a must-have for bioengineers seeking a comprehensive overview of this important subject and examples of medical applications, as well as researchers and academics in the same field.
- Biomanufacturing for tissue engineering: Present and future trendsPublication . Bartolo, Paulo; Chua, C. K.; Almeida, Henrique de Amorim; Chou, S. M.; Lim, A. S. C.Tissue engineering, often referred to as regenerative medicine and reparative medicine, is an interdisciplinary field that necessitates the combined effort of cell biologists, engineers, material scientists, mathematicians, geneticists, and clinicians toward the development of biological substitutes that restore, maintain, or improve tissue function. It has emerged as a rapidly expanding approach to address the organ shortage problem and comprises tissue regeneration and organ substitution. Cells placed on/or within constructs is the most common strategy in tissue engineering. Successful cell seeding depends on fast attachment of cell to scaffolds, high cell survival and uniform cell distribution. The seeding time is strongly dependent on the scaffold material and architecture. Scaffolds provide an initial biochemical substrate for the novel tissue until cells can produce their own extra-cellular matrix (ECM). Thus scaffolds not only define the 3D space for the formation of new tissues, but also serve to provide tissues with appropriate functions. These scaffolds are often critical, both in vivo (within the body) or in vitro (outside the body) mimicking in vivo conditions. Additive fabrication processes represent a new group of non-conventional fabrication techniques recently introduced in the biomedical engineering field. In tissue engineering, additive fabrication processes have been used to produce scaffolds with customised external shape and predefined internal morphology, allowing good control of pore size and pore distribution. This article provides a comprehensive state-of-the-art review of the application of biomanufacturing additive processes in the field of tissue engineering. New and moving trends in biomanufacturing technologies and the concept of direct cell-printing technologies are also discussed.
- Biomechanically Inspired Shape Memory Effect Machines Driven by Muscle like Acting NiTi AlloysPublication . Raffaella Aversa; Francesco Tamburrino; Relly Victoria V. Petrescu; Florian Ion T. Petrescu; Mateus, Artur; Guanying, Chen; Antonio ApicellaThe research shows a bioinspired approach to be adopted to design of systems based on Shape Memory Alloys (SMAs), a class of Smart Materials that has in common with muscles the capability to react to an impulse (thermal for SMAs) with a contraction. The biomechanically inspired machine that is discussed in the paper refers to the antagonistic muscles pairs, which belongs to the Skeletal Muscles and are normally arranged in opposition so that as one group of muscles contract another group relaxes or lengthens. The study proposes a model, a solution not only to design a specific application, but also to provide an approach to be used for a wide range of adaptive applications (switchable windows, smart shadow systems, parking and urban shelters, etc.), where the shape changes in response to different external stimuli. The use of antagonist pairs mechanism provides a solution for better optimized systems based on SMAs where the main and proven advantages are: Easier and faster change of shape, lower need of energy for system operation, lower cost for SMA training and no problem of overheating.
- Cancellative conjugation semigroups and monoidsPublication . Garrão, A. P.; Martins-Ferreira, Nelson; Raposo, M.; Sobral, M.We show that the category of cancellative conjugation semigroups is weakly Mal’tsev and give a characterization of all admissible diagrams there. In the category of cancellative conjugation monoids we describe, for Schreier split epimorphisms with codomain B and kernel X, all morphisms h: X→ B which induce a reflexive graph, an internal category or an internal groupoid. We describe Schreier split epimorphisms in terms of external actions and consider the notions of precrossed semimodule, crossed semimodule and crossed module in the context of cancellative conjugation monoids. In this category we prove that a relative version of the so-called “Smith is Huq” condition for Schreier split epimorphisms holds as well as other relative conditions.
- Choosing sheep (Ovis aries) as animal model for temporomandibular joint research: Morphological, histological and biomechanical characterization of the joint discPublication . Angelo, D.F.; Morouço, P.; Alves, N.; Viana, T.; Santos, F.; González, R.; Monje, F.; Macias, D.; Carrapiço, B.; Sousa, R.; Cavaco-Gonçalves, S.; Salvado, F.; Peleteiro, C.; Pinho, M.Preclinical trials are essential to the development of scientific technologies. Remarkable molecular and cellular research has been done using small animal models. However, significant differences exist regarding the articular behavior between these models and humans. Thus, large animal models may be more appropriate to perform trials involving the temporomandibular joint (TMJ). The aim of this work was to make a morphological (anatomic dissection and white light 3D scanning system), histological (TMJ in bloc was removed for histologic analysis) and biomechanical characterization (tension and compression tests) of sheep TMJcomparing the obtained results with human data. Results showed that sheep processus condy-laris and fossa mandibularis are anatomically similar to the same human structures. TMJ dischas an elliptical perimeter, thinner in the center than in periphery. Peripheral area actsas a ring structure supporting the central zone. The disc cells display both fibroblast andchondrocyte-like morphology. Marginal area is formed by loose connective tissue, with somechondrocyte-like cells and collagen fibers in diverse orientations. Discs obtained a tensile mod-ulus of 3.97 ± 0.73 MPa and 9.39 ± 1.67 MPa, for anteroposterior and mediolateral assessment.The TMJ discs presented a compressive modulus (E) of 446.41 ± 5.16 MPa and their maximumstress value ( max) was 18.87 ± 1.33 MPa. Obtained results suggest that these animals should beconsidered as a prime model for TMJ research and procedural training. Further investigationsin the field of oromaxillofacial surgery involving TMJ should consider sheep as a good animalmodel due to its resemblance of the same joint in humans.© 2016 Elsevier Masson SAS. All rights reserved.
- Comparison by computer fluid dynamics of the drag force acting upon two helmets for wheelchair racersPublication . Forte, P; Marinho, D. A.; Morouço, P; Pascoal-Faria, P.; Barbosa, T. M.The aim of this study was to compare the drag force created by two helmets (time trial and road)used by a wheelchair racer. The head and helmet of the racer were scanned to obtain the3D models. Numerical simulation was run on Fluent, having as output the drag force for both helmets (road and time trial) in two different positions (0º and 90º) and increasing velocities (from 2.0 to 6.5 m/s). The greatest aerodynamic drag was noted wearing a time trial helmet in 90º ranging from 0.1025N to 0.8475N; this was also the position with the highest drag. The velocity with higher drag for booth helmets was at 6.5 m/s. The time trial helmet at 0º had the lower aerodynamic drag, compared with the same position of road helmet. The drag force seems to be lower wearing the time trial helmet and keeping the 0º position and, thus, should be considered for sprinting events.