CDRsp - Capítulos de livros
Permanent URI for this collection
Browse
Browsing CDRsp - Capítulos de livros by Field of Science and Technology (FOS) "Engenharia e Tecnologia::Outras Engenharias e Tecnologias"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- 3D shape prior active contours for an automatic segmentation of a patient specific femur from a CT scanPublication . Almeida, D.; Folgado, J.; Fernandes, P.R.; Ruben, RuiThe following paper describes a novel approach to a medical image segmentation problem. The fully automated computational procedure receives as input images from CT scan exams of the human femur and returns a three dimensional representation of the bone. This patient specific iterative approach is based in 3D active contours without edges, implemented over a level set framework, on which the evolution of the contour depends on local image parameters which can easily be defined by the user but also on a priori information about the volume to segment. This joint approach will lead to an optimal solution convergence of the iterative method. The resulting point cloud can be an excellent starting point for a Finite Element mesh generation and analysis or the basis for a stereolitography for example.
- Recent Advances in Additive BiomanufacturingPublication . Pereira, Rúben Filipe Brás; Bartolo, PauloThe principles of tissue engineering and regenerative medicine have been used for the development of innovative medical therapies for engineering tissues and organs. These therapies involve the use of biomaterials, cells, and biologically active molecules, according to two fundamental strategies: the top-down and bottom-up approaches. Top-down approaches, which are the most commonly used, involve the implantation of porous scaffolds, with or without living cells and bioactive agents, into the defect site in the patient. In these approaches, scaffolds act as temporary templates for the seeded cells, mimicking the properties of the native extracellular matrix and providing an adequate environment for the growth of the new tissue. Scaffolds can be produced by using either conventional or additive techniques, resulting in structures with different levels of porosity, pore size, interconnectivity, and spatial distribution. Additive biomanufacturing techniques allow significantly more control over the scaffold characteristics (e.g., architecture, porosity, permeability, etc.), enabling the automatic and reproducible fabrication of scaffolds in a wide range of polymeric, ceramic, and composite materials. Some of these techniques also allow the fabrication of constructs encapsulating living cells. This chapter describes the most recent advances in the top-down approach to fabricate scaffolds for tissue regeneration, presenting the most important additive biomanufacturing techniques and processable materials. Future perspectives in the field and challenges for future research are also discussed.