Browsing by Author "Moura, Carla"
Now showing 1 - 10 of 23
Results Per Page
Sort Options
- Additive manufactured Poly("-caprolactone)-graphene scaffolds: Lamellar crystal orientation, mechanical properties and biological performancePublication . Biscaia, Sara; Silva, João C.; Moura, Carla; Viana, Tânia; Tojeira, Ana; Mitchell, Geoffrey R.; Pascoal-Faria, Paula; Ferreira, Frederico Castelo; Alves, NunoUnderstanding the mechano–biological coupling mechanisms of biomaterials for tissue engineering is of major importance to assure proper scaffold performance in situ. Therefore, it is of paramount importance to establish correlations between biomaterials, their processing conditions, and their mechanical behaviour, as well as their biological performance. With this work, it was possible to infer a correlation between the addition of graphene nanoparticles (GPN) in a concentration of 0.25, 0.5, and 0.75% (w/w) (GPN0.25, GPN0.5, and GPN0.75, respectively) in three-dimensional poly("-caprolactone) (PCL)-based scaffolds, the extrusion-based processing parameters, and the lamellar crystal orientation through small-angle X-ray scattering experiments of extruded samples of PCL and PCL/GPN. Results revealed a significant impact on the scaffold’s mechanical properties to a maximum of 0.5% of GPN content, with a significant improvement in the compressive modulus of 59 MPa to 93 MPa. In vitro cell culture experiments showed the scaffold’s ability to support the adhesion and proliferation of L929 fibroblasts (fold increase of 28, 22, 23, and 13 at day 13 (in relation to day 1) for PCL, GPN0.25, GPN0.5, and GPN0.75, respectively) and bone marrow mesenchymal stem/stromal cells (seven-fold increase for all sample groups at day 21 in relation to day 1). Moreover, the cells maintained high viability, regular morphology, and migration capacity in all the different experimental groups, assuring the potential of PCL/GPN scaffolds for tissue engineering (TE) applications.
- Avaliação Postural - Manual de apoio à UC de Estudo do Movimento Humano do Curso de Licenciatura em FisioterapiaPublication . Moura, Carla; Cruz, Joana; Alves-Guerreiro, José; Carrão, Luís; Morais, Nuno
- Bioengineered Temporomandibular Joint Disk Implants: Study Protocol for a Two-Phase Exploratory Randomized Preclinical Pilot Trial in 18 Black Merino Sheep (TEMPOJIMS)Publication . Ângelo, David Faustino; Monje, Florencio Gil; González-García, Raúl; Little, Christopher B; Mónico, Lisete; Pinho, Mário; Santos, Fábio Abade; Carrapiço, Belmira; Gonçalves, Sandra Cavaco; Morouço, Pedro; Alves, Nuno; Moura, Carla; Wang, Yadong; Jeffries, Eric; Gao, Jin; Sousa, Rita; Neto, Lia Lucas; Caldeira, Daniel; Salvado, FranciscoBackground: Preclinical trials are essential to test efficacious options to substitute the temporomandibular joint (TMJ) disk. The contemporary absence of an ideal treatment for patients with severe TMJ disorders can be related to difficulties concerning the appropriate study design to conduct preclinical trials in the TMJ field. These difficulties can be associated with the use of heterogeneous animal models, the use of the contralateral TMJ as control, the absence of rigorous randomized controlled preclinical trials with blinded outcomes assessors, and difficulties involving multidisciplinary teams. Objective: This study aims to develop a new, reproducible, and effective study design for preclinical research in the TMJ domain, obtaining rigorous data related to (1) identify the impact of bilateral discectomy in black Merino sheep, (2) identify the impact of bilateral discopexy in black Merino sheep, and (3) identify the impact of three different bioengineering TMJ discs in black Merino sheep. Methods: A two-phase exploratory randomized controlled preclinical trial with blinded outcomes is proposed. In the first phase, nine sheep are randomized into three different surgical bilateral procedures: bilateral discectomy, bilateral discopexy, and sham surgery. In the second phase, nine sheep are randomized to bilaterally test three different TMJ bioengineering disk implants. The primary outcome is the histological gradation of TMJ. Secondary outcomes are imaging changes, absolute masticatory time, ruminant time per cycle, ruminant kinetics, ruminant area, and sheep weight Results: Previous preclinical studies in this field have used the contralateral unoperated side as a control, different animal models ranging from mice to a canine model, with nonrandomized, nonblinded and uncontrolled study designs and limited outcomes measures. The main goal of this exploratory preclinical protocol is to set a new standard for future preclinical trials in oromaxillofacial surgery, particularly in the TMJ field, by proposing a rigorous design in black Merino sheep. The authors also intend to test the feasibility of pilot outcomes. The authors expect to increase the quality of further studies in this field and to progress in future treatment options for patients undergoing surgery for TMJ disk replacement. Conclusions: The study has commenced, but it is too early to provide results or conclusions.
- Biofísica - Caso ClínicoPublication . Carrão, Luis Miguel Costa; Moura, Carla
- Biological Treatments for Temporomandibular Joint Disc Disorders: Strategies in Tissue EngineeringPublication . Trindade, Daniela; Cordeiro, Rachel; José, Henrique Cardoso; DF, Angelo; Alves, Nuno; Moura, CarlaThe temporomandibular joint (TMJ) is an important structure for the masticatory system and the pathologies associated with it affect a large part of the population and impair people’s lifestyle. It comprises an articular disc, that presents low regeneration capacities and the existing clinical options for repairing it are not effective. This way, it is imperative to achieve a permanent solution to guarantee a good quality of life for people who suffer from these pathologies. Complete knowledge of the unique characteristics of the disc will make it easier to achieve a successful tissue engineering (TE) construct. Thus, the search for an effective, safe and lasting solution has already started, including materials that replace the disc, is currently growing. The search for a solution based on TE approaches, which involve regenerating the disc. The present work revises the TMJ disc characteristics and its associated diseases. The different materials used for a total disc replacement are presented, highlighting the TE area. A special focus on future trends in the field and part of the solution for the TMJ problems described in this review will involve the development of a promising engineered disc approach through the use of decellularized extracellular matrices.
- A Brief Review on Processes for Cartilage RepairPublication . Moura, Carla; Santos-Rocha, Rita; Franco, Susana; Malça, Cândida; Galhano, Cristina; Henriques, Marta; Morouço, PedroThe aim of the present review was to highlight some of the available processes for cartilage repair and regeneration. Considering the high impact that cartilage degeneration has in the quality of life, in an aging society, efforts to promote better treatments are crucial. The current available processes have advantages and drawbacks, that should be further investigated, aiming to obtain tailored and successful repair. Finally, some suggestions for tissue engineering strategies are presented, so that the scientific community can debate pros and cons to be investigated.
- Characterization of Biocompatible Poly(Ethylene Glycol)-Dimethacrylate Hydrogels for Tissue EngineeringPublication . Lopes, João; Fonseca, Rita; Viana, Tânia; Fernandes, Cristiana; Morouço, Pedro; Moura, Carla; Biscaia, SaraTissue Engineering depends on broadly techniques to regenerate tissues and/or organ functions. To do so, tailored polymeric and/or hydrogel scaffolds may be used to ensure the appropriate regeneration. Hydrogels are suitable materials for constructing cell-laden matrices as they can be produced with incorporation of cells and rapidly cross-linked in situ through photopolymerisation reactions. Measurement of the polymerization degree, as well as resistance to compression and water retention are fundamental tests to evaluate the characteristics of hydrogels. In this work, free-radical polymerisation of poly(ethylene glycol)-dimethacrylate (PEGDMA) in UV light was assessed. Several hydrogels with different photoinitiator and water contents were produced to evaluate their influence on hydrogels behaviour. Experiments showed that variations on water and photoinitiator content induce changes in the physical and chemical behaviour of hydrogels. As it was found, water content prevents polymerisation to occur and reduces the mechanical properties of hydrogels weakening them. Furthermore, differences were found in varying water content from 15 to 30%, since this increase turned hydrogels more fragile and increase their stabilization time for water retention.
- Chondrogenic differentiation of mesenchymal stem/stromal cells on 3D porous poly (ε-caprolactone) scaffolds: Effects of material alkaline treatment and chondroitin sulfate supplementationPublication . Moura, Carla; Silva, João Carlos; Faria, Sofia; Fernandes, Paulo Rui; Silva, Cláudia Lobato da; Cabral, Joaquim Manuel Sampaio; Linhardt, Robert; Bártolo, Paulo Jorge; Ferreira, Frederico CasteloCartilage defects resultant from trauma or degenerative diseases (e.g., osteoarthritis) can potentially be repaired using tissue engineering (TE) strategies combining progenitor cells, biomaterial scaffolds and bio physical/chemical cues. This work examines promoting chondrogenic differentiation of human bone marrow mesenchymal stem/stromal cells (BMMSCs) by combining the effects of modified poly (ε-caprolactone) (PCL) scaffolds hydrophilicity and chondroitin sulfate (CS) supplementation in a hypoxic 5% oxygen atmosphere. 3D extruded PCL scaffolds, characterized by mCT, featured a 21 mmL1 surface area to volume ratio, 390 mm pore size and approximately 100% pore interconnectivity. Scaffold immersion in sodium hydroxide solutions for different periods of time had major effects in scaffold surface morphology, wettability and mechanical properties, but without improvements on cell adhesion. In-situ chondrogenic differentiation of BM-MSC seeded in 3D-extruded PCL scaffolds resulted in higher cell populations and ECM deposition along all scaffold structure, when chondrogenesis was preceded by an expansion phase. Additionally, CS supplementation during BM-MSC expansion was crucial to enhance aggrecan gene expression, known as a hallmark of chondrogenesis. Overall, this study presents an approach to tailor the wettability and mechanical properties of PCL scaffolds and supports the use of CSsupplementation as a biochemical cue in integrated TE strategies for cartilage regeneration.
- Comprehensive review on full bone regeneration through 3D printing approachesPublication . Fernandes, Cristiana; Moura, Carla; Ascenso, Rita M.T.; Amado, Sandra; Alves, Nuno; Pascoal-Faria, PaulaOver the last decades, the number of work accidents associated with bone fractures has increased leading to a growing concern worldwide. Currently, autografts, allografts, and xenografts are used for bone regeneration. However, their application has associated risks. Tissue engineering (TE) has brought solutions to address these problems, through the production of temporary supports, providing mechanical support to the formation of new bone tissue and biocompatible and biodegradable scaffolds, which allow cell adhesion and proliferation to ensure bone formation. The combination of materials and structure with the technique to be used will directly influence their physical and chemical properties and, consequently, their action in contributing to bone regeneration. Thus, the focus of this chapter is to perform an exhaustive literature review and a critical analysis of the state of the art in bone TE and present a proposal of an optimized temporary support geometry for bone regeneration in case of large bone defects. For this, it was listed and identified the best choice of biomaterials, fabrication method, cell type and their culture conditions (static vs. dynamic), and/or the inclusion of growth factors for the repair of large bone defects.
- Corncob cellulose scaffolds: A new sustainable temporary implant for cartilage replacementPublication . Cordeiro, Rachel; Henriques, Marta; Silva, João C.; Antunes, Filipe; Alves, Nuno; Moura, CarlaTissue engineering using scaffolds is a promising strategy to repair damaged articular cartilage, whose self-repair is inefficient. Cellulose properties have been recognized for their application in the biomedical field. The aim of this study was to fabricate and characterize novel scaffolds based on poly(E-caprolactone) (PCL) and sustainable cellulose. Thus, the performance of corncob-derived cellulose (CC) in scaffolds as an alternative to wood cellulose (WC) was also investigated to reduce the environmental footprint. Two concentrations of CC in scaffolds were tested, 1% and 2% (w/w), and commercial WC using the same concentrations, as a control. Morphologically, all the developed scaffolds presented pore sizes of ~300 m, 10 layers, a circular shape and well-dispersed cellulose. Thus, all of these characteristics and properties provide the manufactured scaffolds suitable for use in cartilage-replacement strategies. The use of 2% CC results in higher porosity (54.24%), which promotes cell infiltration/migration and nutrient exchange, and has similar mechanical properties to WC. As for the effects of enzymatic degradation of the scaffolds, no significant changes (p > 0.05) were observed in resistance over time. However, the obtained compressive modulus of the scaffold with 2% CC was similar to that of WC. Overall, our results suggest that the integration of 2% corncob cellulose in PCL scaffolds could be a novel way to replace wood-cellulose-containing scaffolds, highlighting its potential for cartilage-replacement strategies.
- «
- 1 (current)
- 2
- 3
- »
