Browsing by Author "Domingos, Marco"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
- Additive manufacturing of tissues and organsPublication . Melchels, Ferry P.W.; Domingos, Marco; Klein, Travis J.; Malda, Jos; Bártolo, Paulo J.; Hutmacher, Dietmar W.Additive manufacturing techniques offer the potential to fabricate organized tissue constructs to repair or replace damaged or diseased human tissues and organs. Using these techniques, spatial variations of cells along multiple axes with high geometric complexity in combination with different biomaterials can be generated. The level of control offered by these computer-controlled technologies to design and fabricate tissues will accelerate our understanding of the governing factors of tissue formation and function. Moreover, it will provide a valuable tool to study the effect of anatomy on graft performance. In this review, we discuss the rationale for engineering tissues and organs by combining computer-aided design with additive manufacturing technologies that encompass the simultaneous deposition of cells and materials. Current strategies are presented, particularly with respect to limitations due to the lack of suitable polymers, and requirements to move the current concepts to practical application.
- Biofabrication Strategies for Tissue EngineeringPublication . Bártolo, Paulo Jorge; Domingos, Marco; Patrício, Tatiana; Cometa, Stefania; Mironov, Vladimir; Bártolo, Paulo JorgeThe success of Tissue Engineering (TE) strongly relies on the capability of designing biomimetic scaffolds closely resembling the host tissue environment. Due to the functional multitude of the native tissues, the considerations are complex and include chemical, morphological, mechanical and biological factors and their mutability with time. Nonetheless, to trigger and/or assist the “natural healing mechanism’’ of the human body it seems essential to provide an appropriate biomechanical environment and biomolecular signalling to the cells. Novel biomanufacturing processes are increasingly being recognized as ideal techniques to produce 3D biodegradable structures with optimal pore size and spatial distribution, providing an adequate mechanical support for tissue regeneration while shaping in-growing tissues. In this chapter, we discuss in detail the most recent advances in the field of biofabrication, providing and updated overview of processes and materials employed in the production of tissue engineering constructs. Bioprinting or ‘’scaffold-less’’ strategies are also presented in this work. They are based on the precise deposition of high-density tissue spheroids or cell aggregates being advantageous alternatives to the current scaffold-based tissue engineering approach.
- Effect of in Vitro Enzymatic Degradation on 3D Printed Poly(ε-Caprolactone) Scaffolds: Morphological, Chemical and Mechanical PropertiesPublication . Ferreira, Joana; Gloria, Antonio; Cometa, Stefania; Coelho, Jorge F. J.; Domingos, MarcoBackground: In recent years, the tissue engineering (TE) field has significantly benefited from advanced techniques such as additive manufacturing (AM), for the design of customized 3D scaffolds with the aim of guided tissue repair. Among the wide range of materials available to biomanufacture 3D scaffolds, poly(ε-caprolactone) (PCL) clearly arises as the synthetic polymer with the greatest potential, due to its unique properties – namely, biocompatibility, biodegradability, thermal and chemical stability and processability. This study aimed for the first time to investigate the effect of pore geometry on the in vitro enzymatic chain cleavage mechanism of PCL scaffolds manufactured by the AM extrusion process. Methods: Methods: Morphological properties of 3D printed PCL scaffolds before and after degradation were evaluated using Scanning Electron Microscopy (SEM) and micro-computed tomography (μ-CT). Differential Scanning Calorimetry (DSC) was employed to determine possible variations in the crystallinity of the scaffolds during the degradation period. The molecular weight was assessed using Size Exclusion Chromatography (SEC) while the mechanical properties were investigated under static compression conditions. Results: Morphological results suggested a uniform reduction of filament diameter, while increasing the scaffolds’ porosity. DSC analysis revealed and increment in the crystallinity degree while the molecular weight, evaluated through SEC, remained almost constant during the incubation period (25 days). Mechanical analysis highlighted a decrease in the compressive modulus and maximum stress over time, probably related to the significant weight loss of the scaffolds. Conclusions: All of these results suggest that PCL scaffolds undergo enzymatic degradation through a surface erosion mechanism, which leads to significant variations in mechanical, physical and chemical properties, but which has little influence on pore geometry.
- Evaluation of in vitro degradation of PCL scaffolds fabricated via BioExtrusion – Part 2: Influence of pore size and geometry: The present study is to accurately investigate the influence of design parameters, such as filament distance (FD) and lay-down pattern, on the degradation behaviour and kinetics of PCL scaffolds, obtained via BioExtrusionPublication . Domingos, Marco; Chiellini, F.; Cometa, S.; Giglio, E. De; Grillo-Fernandes, E.; Bartolo, Paulo; Chiellini, E.The in vivo degradation processes by which scaffolds degrade and are replaced by neo-tissue are complex and may be influenced by many factors, including environmental conditions, material properties, porosity and 3D architecture. The present study is focused on the influence of design parameters, filament distance (FD) and lay-down pattern, on the degradation kinetics of Polycaprolactone (PCL) scaffolds obtained via BioExtrusion. Through the variation of design parameters it was possible to obtain two groups of scaffolds with distinct pore geometry and size. The in vitro degradation was performed in simulated body fluid (SBF) and in phosphate buffer solution (PBS) for six months. Our results highlight a more complex degradation pattern of the scaffolds in SBF than in PBS, probably related to a mineral deposition. Significant statistical differences in weight loss values at month 6, allowed us to conclude that degradation kinetics of PCL scaffolds is strongly influenced by the pore size.
- Flow-induced motions of flexible filaments hanging in cross-flowPublication . Silva-Leon, Jorge; Cioncolini, Andrea; Filippone, Antonio; Domingos, MarcoExperiments were carried out to study the dynamics of hanging cantilever flexible filaments in air cross-flow. Thirteen flexible filaments of 0.61 mm diameter and lengths from 20 mm to 60 mm were tested with wind speeds in the range of 1–15 m/s, corresponding to Reynolds numbers of 25 < Red < 610 and reduced velocities in the range of 5 < U∗ < 130. Two synchronized fast-imaging cameras were used to reconstruct the motion of the filaments in three dimensions, and a blend of linear and nonlinear time-series analysis techniques was used to analyze the observed dynamics. Long filaments show a rich dynamics as the wind speed is gradually increased, ranging from small amplitude vibration to large amplitude limit-cycle oscillation and to a more complex chaotic motion. However, short filaments only exhibit a small amplitude vibration-like motion throughout the range of wind speeds tested. Turbulent buffeting is identified as the main source of excitation responsible for the observed filaments dynamics. The results highlight the importance of the filament damping ratio, which is modulated by the filament length, as a controlling parameter for the dynamics of flexible filaments in cross flow, in addition to the flow velocity. The Scruton number for these tests correspond to 31 < Sc < 86.
- PHEMA-based thin hydrogel films for biomedical applicationsPublication . De Giglio, E.; Cafagna, D.; Giangregorio, MM; Domingos, Marco; Mattioli-Belmonte, M.; Cometa, S.Poly(2-hydroxyethyl methacrylate) based thin coatings were electro-synthesized by cyclic voltammetry on Au-coated quartz crystal surfaces to study different solid—liquid interfacial processes. By varying the electrochemical parameters and the presence or not of a crosslinking agent, films were obtained with thicknesses ranging from 5 to 90 nm. Surface characterization was performed by X-ray photoelectron spectroscopy, atomic force microscopy, and static contact angle measurements. Using quartz crystal microbalance with dissipation monitoring to investigate the relationship between the film thickness and the swelling behavior, it was found that these characteristics can be modulated by varying either the number of voltammetric cycles or the presence of the crosslinker. Cell adhesion and biocompatibility tests indicate that these film coatings were suitable for biomedical applications.
