Logo do repositório
 
Publicação

Spectral theory for the fractal Laplacian in the context of h-sets

dc.contributor.authorCaetano, António M.
dc.contributor.authorLopes, Sofia
dc.date.accessioned2026-01-12T17:10:49Z
dc.date.available2026-01-12T17:10:49Z
dc.date.issued2010-11-17
dc.description.abstractAn h-set is a nonempty compact subset of the Euclidean n-space which supports a finite Radon measure for which the measure of balls centered on the subset is essentially given by the image of their radius by a suitable function h. In most cases of interest such a subset has Lebesgue measure zero and has a fractal structure. Let ω be a bounded C∞ domain in \documentclass{article}\begin{document}$\mathbb R̂n $\end{document} with Γ ⊂ ω. Letwhere (-δ)-1 is the inverse of the Dirichlet Laplacian in ω and trΓ is, say, trace type operator. The operator B, acting in convenient function spaces in ω, is studied. Estimations for the eigenvalues of B are presented, and generally shown to be dependent on h, and the smoothness of the associated eigenfunctions is discussed. Some results on Besov spaces of generalised smoothness on \documentclass{article}\begin{document}${{\bb R}̂n} $\end{document} and on domains which were obtained in the course of this work are also presented, namely pointwise multipliers, the existence of a universal extension operator, interpolation with function parameter and mapping properties of the Dirichlet Laplacian.eng
dc.description.sponsorshipThe authors would like to thank Professor Hans Triebel for his valuable suggestions and for the fruitful discussions during the preparation of this paper. The second named author is supported by Fundação para a Ciência e a Tecnologia (FCT) and European Social Fund ˆin the scope of Community Support Framework III. This research was also partially supported by Unidade de Investigação Matematica e Aplicações of Universidade de Aveiro through Programa Operacional “Ciência, Tecnologia, Inovação” (POCTI) ˜of FCT, cofinanced by the European Community Fund (FEDER).
dc.identifier.citationCaetano A.M., Lopes S., Spectral theory for the fractal Laplacian in the context of h-sets (2011) Mathematische Nachrichten, 284 (1), pp. 5 - 38. DOI: 10.1002/mana.200910214
dc.identifier.doi10.1002/mana.200910214
dc.identifier.issn0025-584X
dc.identifier.urihttp://hdl.handle.net/10400.8/15302
dc.language.isoeng
dc.peerreviewedyes
dc.publisherWiley
dc.relation.hasversionhttps://onlinelibrary.wiley.com/doi/full/10.1002/mana.200910214?msockid=06f167facdc96ca237d0714ecc3a6daf
dc.relation.ispartofMathematische Nachrichten
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectExtension operator
dc.subjectFractals
dc.subjectFunction spaces
dc.subjecth-sets
dc.subjectInterpolation
dc.subjectLaplacian
dc.subjectSpectral theory
dc.subjectTraces
dc.titleSpectral theory for the fractal Laplacian in the context of h-setseng
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage38
oaire.citation.issue1
oaire.citation.startPage5
oaire.citation.titleMathematische Nachrichten
oaire.citation.volume284
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85

Ficheiros

Principais
A mostrar 1 - 1 de 1
A carregar...
Miniatura
Nome:
193.pdf
Tamanho:
321.54 KB
Formato:
Adobe Portable Document Format
Licença
A mostrar 1 - 1 de 1
Miniatura indisponível
Nome:
license.txt
Tamanho:
1.32 KB
Formato:
Item-specific license agreed upon to submission
Descrição: