Logo do repositório
 
Publicação

GeoWeightedModel: An R-Shiny package for geographically weighted models

dc.contributor.authorDe la Hoz-M, Javier
dc.contributor.authorMendes, Susana
dc.contributor.authorFernandez-Gómez, María José
dc.date.accessioned2023-08-23T10:29:40Z
dc.date.available2023-08-23T10:29:40Z
dc.date.issued2022
dc.description.abstractThis paper describes GeoWeightedModel, a R package, which provides a graphical user friendly web pplication to perform techniques from a subarea of spatial Statistics known as Geographically Weighted (GW) models, such as Geographically Weighted Regression (GWR) and its extensions: Robust GWR, Generalized GWR, Heteroskedastic GWR, Mixed GWR, and ‘‘Scalable GWR), Geographically Weighted Principal Component Analysis, and Geographically Weighted Discriminant analysis. It also allows calculating a basic and robust Geographically weighted summary. The main goal of GeoWeightedModel package was to make the workflow easier to use, especially for those who are not familiar with the R environment. With GeoWeightedModel, analyses can be performed interactively (point-and-click way) in a web browser, making the applications easier for many more researchers. In addition with this tool, the results of the analyses can be mapped providing a valuable tool for exploring the spatial heterogeneity of the data.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationJavier De La Hoz-M, Susana Mendes, María José Fernandez-Gómez, GeoWeightedModel : An R-Shiny package for Geographically Weighted Models, SoftwareX, Volume 20, 2022, 101250, ISSN 2352-7110, https://doi.org/10.1016/j.softx.2022.101250pt_PT
dc.identifier.doi10.1016/j.softx.2022.101250pt_PT
dc.identifier.issn2352-7110
dc.identifier.urihttp://hdl.handle.net/10400.8/8723
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherElsevierpt_PT
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S2352711022001686pt_PT
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectGeographically weightedpt_PT
dc.subjectGeographically weighted analysispt_PT
dc.subjectSpatial heterogeneitypt_PT
dc.subjectGeographically weighted regressionpt_PT
dc.subjectGeographically weighted principal component analysispt_PT
dc.subjectDiscriminant geographically weighted analysispt_PT
dc.titleGeoWeightedModel: An R-Shiny package for geographically weighted modelspt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.titleSoftwareXpt_PT
oaire.citation.volume20pt_PT
person.familyNameDE LA HOZ-M
person.familyNameMendes
person.givenNameJAVIER
person.givenNameSusana
person.identifier322266
person.identifier.ciencia-id4514-12E2-1FD9
person.identifier.orcid0000-0001-7779-0803
person.identifier.orcid0000-0001-9681-3169
person.identifier.scopus-author-id34976470100
person.identifier.scopus-author-id33568138000
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication4c86a446-22da-425a-99d0-fd90e7e184ad
relation.isAuthorOfPublicationdb5be03b-2077-482b-a9cf-8b3e84861276
relation.isAuthorOfPublication.latestForDiscoverydb5be03b-2077-482b-a9cf-8b3e84861276

Ficheiros

Principais
A mostrar 1 - 1 de 1
A carregar...
Miniatura
Nome:
De La Hoz et al_2022_Softwarex.pdf
Tamanho:
2.99 MB
Formato:
Adobe Portable Document Format
Descrição:
Licença
A mostrar 1 - 1 de 1
Miniatura indisponível
Nome:
license.txt
Tamanho:
1.32 KB
Formato:
Item-specific license agreed upon to submission
Descrição: