Repository logo
 
Publication

Prediabetes risk classification algorithm via carotid bodies and K-means clustering technique

datacite.subject.fosCiências Médicas::Ciências da Saúde
datacite.subject.sdg03:Saúde de Qualidade
dc.contributor.authorPinheiro, Rafael F.
dc.contributor.authorGuarino, Maria P.
dc.contributor.authorLages, Marlene
dc.contributor.authorFonseca-Pinto, Rui
dc.date.accessioned2025-09-30T09:35:18Z
dc.date.available2025-09-30T09:35:18Z
dc.date.issued2025-01-20
dc.descriptionArticle number - e2516
dc.description.abstractDiabetes is a disease that affects millions of people in the world and its early screening prevents serious health problems, also providing relief in the demand for healthcare services. In the search for methods to support early diagnosis, this article introduces a novel prediabetes risk classification algorithm (PRCA) for type-2 diabetes mellitus (T2DM), utilizing the chemosensitivity of carotid bodies (CB) and K-means clustering technique from the field of machine learning. Heart rate (HR) and respiratory rate (RR) data from eight volunteers with prediabetes and 25 without prediabetes were analyzed. Data were collected in basal conditions and after stimulation of the CBs by inhalation of 100% of oxygen and after ingestion of a standardized meal. During the analysis, a greater variability of groups was observed in people with prediabetes compared to the control group, particularly after inhalation of oxygen. The algorithm developed from these results showed an accuracy of 86% in classifying for prediabetes. This approach, centered on CB chemosensitivity deregulation in early disease stages, offers a nuanced detection method beyond conventional techniques. Moreover, the adaptable algorithm and clustering methodology hold promise as risk classifications for other diseases. Future endeavors aim to validate the algorithm through longitudinal studies tracking disease development among volunteers and expand the study’s scope to include a larger participant pool.eng
dc.description.sponsorshipThis work was funded by Portuguese national funds provided by Fundação para a Ciência e Tecnologia: FCT-UIDB/05704/2020 and CEECINST/00051/2018 regarding Maria P. Guarino collaboration; and in the scope of the research project 2 ARTs—Acessing Autonomic Control in Cardiac Rehabilitation (PTDC/EMD-EMD/6588/2020) cof inanced by the Portuguese Foundation for Science and Technology (FCT). Rafael Pinheiro received financial support from the FCT through the Institutional Scientific Employment Stimulus CEECINST/00060/2021. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
dc.identifier.citationPinheiro RF, Guarino MP, Lages M, Fonseca-Pinto R. 2025. Prediabetes risk classification algorithm via carotid bodies and K-means clustering technique. PeerJ Computer Science 11:e2516 https://doi.org/10.7717/peerj-cs.2516
dc.identifier.doi10.7717/peerj-cs.2516
dc.identifier.issn2376-5992
dc.identifier.urihttp://hdl.handle.net/10400.8/14152
dc.language.isoeng
dc.peerreviewedyes
dc.publisherPeerJ
dc.relationCenter for Innovative Care and Health Technology
dc.relation2ARTs -Acessing Autonomic Control in Cardiac Rehabilitation
dc.relation.hasversionhttps://peerj.com/articles/cs-2516/
dc.relation.ispartofPeerJ Computer Science
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectCarotid bodies
dc.subjectCBmeter
dc.subjectDiabetes
dc.subjectK-means
dc.subjectMachine learning
dc.titlePrediabetes risk classification algorithm via carotid bodies and K-means clustering techniqueeng
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleCenter for Innovative Care and Health Technology
oaire.awardTitle2ARTs -Acessing Autonomic Control in Cardiac Rehabilitation
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F05704%2F2020/PT
oaire.awardURIhttp://hdl.handle.net/10400.8/14027
oaire.citation.endPage32
oaire.citation.startPage1
oaire.citation.titlePeerJ Computer Science
oaire.citation.volume11
oaire.fundingStream6817 - DCRRNI ID
oaire.fundingStreamConcurso para Financiamento de Projetos de Investigação Científica e Desenvolvimento Tecnológico em Todos os Domínios Científicos - 2020
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
person.familyNamePinheiro
person.familyNameGuarino
person.familyNameLages
person.familyNameFonseca-Pinto
person.givenNameRafael
person.givenNameMaria Pedro
person.givenNameMarlene
person.givenNameRui
person.identifier.ciencia-id8513-F117-D554
person.identifier.ciencia-idF21A-BD01-2D52
person.identifier.ciencia-idC613-4639-10A8
person.identifier.ciencia-id681D-C547-B184
person.identifier.orcid0000-0002-2369-9016
person.identifier.orcid0000-0001-6079-1105
person.identifier.orcid0000-0002-7389-6368
person.identifier.orcid0000-0001-6774-5363
person.identifier.ridB-5594-2015
person.identifier.ridK-9449-2014
person.identifier.scopus-author-id57204116615
person.identifier.scopus-author-id56348477000
person.identifier.scopus-author-id26039086400
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
relation.isAuthorOfPublication06761113-497b-4db8-9d9e-2577c048fadb
relation.isAuthorOfPublicationf163d4df-1e45-4278-affa-5994f206becf
relation.isAuthorOfPublicationdf975834-7d19-4530-834e-1dbd65272822
relation.isAuthorOfPublication7eb9d123-1800-4afd-a2f6-91043353011b
relation.isAuthorOfPublication.latestForDiscovery06761113-497b-4db8-9d9e-2577c048fadb
relation.isProjectOfPublicationd421b07d-3471-4026-aa43-def80b8e142b
relation.isProjectOfPublicationaeb7e5aa-aa09-4407-8532-686e47e5f870
relation.isProjectOfPublication.latestForDiscoveryd421b07d-3471-4026-aa43-def80b8e142b

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Prediabetes risk classification algorit...odies and K-means clustering technique.pdf
Size:
1.92 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.32 KB
Format:
Item-specific license agreed upon to submission
Description: