Publication
Prediabetes risk classification algorithm via carotid bodies and K-means clustering technique
datacite.subject.fos | Ciências Médicas::Ciências da Saúde | |
datacite.subject.sdg | 03:Saúde de Qualidade | |
dc.contributor.author | Pinheiro, Rafael F. | |
dc.contributor.author | Guarino, Maria P. | |
dc.contributor.author | Lages, Marlene | |
dc.contributor.author | Fonseca-Pinto, Rui | |
dc.date.accessioned | 2025-09-30T09:35:18Z | |
dc.date.available | 2025-09-30T09:35:18Z | |
dc.date.issued | 2025-01-20 | |
dc.description | Article number - e2516 | |
dc.description.abstract | Diabetes is a disease that affects millions of people in the world and its early screening prevents serious health problems, also providing relief in the demand for healthcare services. In the search for methods to support early diagnosis, this article introduces a novel prediabetes risk classification algorithm (PRCA) for type-2 diabetes mellitus (T2DM), utilizing the chemosensitivity of carotid bodies (CB) and K-means clustering technique from the field of machine learning. Heart rate (HR) and respiratory rate (RR) data from eight volunteers with prediabetes and 25 without prediabetes were analyzed. Data were collected in basal conditions and after stimulation of the CBs by inhalation of 100% of oxygen and after ingestion of a standardized meal. During the analysis, a greater variability of groups was observed in people with prediabetes compared to the control group, particularly after inhalation of oxygen. The algorithm developed from these results showed an accuracy of 86% in classifying for prediabetes. This approach, centered on CB chemosensitivity deregulation in early disease stages, offers a nuanced detection method beyond conventional techniques. Moreover, the adaptable algorithm and clustering methodology hold promise as risk classifications for other diseases. Future endeavors aim to validate the algorithm through longitudinal studies tracking disease development among volunteers and expand the study’s scope to include a larger participant pool. | eng |
dc.description.sponsorship | This work was funded by Portuguese national funds provided by Fundação para a Ciência e Tecnologia: FCT-UIDB/05704/2020 and CEECINST/00051/2018 regarding Maria P. Guarino collaboration; and in the scope of the research project 2 ARTs—Acessing Autonomic Control in Cardiac Rehabilitation (PTDC/EMD-EMD/6588/2020) cof inanced by the Portuguese Foundation for Science and Technology (FCT). Rafael Pinheiro received financial support from the FCT through the Institutional Scientific Employment Stimulus CEECINST/00060/2021. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. | |
dc.identifier.citation | Pinheiro RF, Guarino MP, Lages M, Fonseca-Pinto R. 2025. Prediabetes risk classification algorithm via carotid bodies and K-means clustering technique. PeerJ Computer Science 11:e2516 https://doi.org/10.7717/peerj-cs.2516 | |
dc.identifier.doi | 10.7717/peerj-cs.2516 | |
dc.identifier.issn | 2376-5992 | |
dc.identifier.uri | http://hdl.handle.net/10400.8/14152 | |
dc.language.iso | eng | |
dc.peerreviewed | yes | |
dc.publisher | PeerJ | |
dc.relation | Center for Innovative Care and Health Technology | |
dc.relation | 2ARTs -Acessing Autonomic Control in Cardiac Rehabilitation | |
dc.relation.hasversion | https://peerj.com/articles/cs-2516/ | |
dc.relation.ispartof | PeerJ Computer Science | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.subject | Carotid bodies | |
dc.subject | CBmeter | |
dc.subject | Diabetes | |
dc.subject | K-means | |
dc.subject | Machine learning | |
dc.title | Prediabetes risk classification algorithm via carotid bodies and K-means clustering technique | eng |
dc.type | journal article | |
dspace.entity.type | Publication | |
oaire.awardTitle | Center for Innovative Care and Health Technology | |
oaire.awardTitle | 2ARTs -Acessing Autonomic Control in Cardiac Rehabilitation | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F05704%2F2020/PT | |
oaire.awardURI | http://hdl.handle.net/10400.8/14027 | |
oaire.citation.endPage | 32 | |
oaire.citation.startPage | 1 | |
oaire.citation.title | PeerJ Computer Science | |
oaire.citation.volume | 11 | |
oaire.fundingStream | 6817 - DCRRNI ID | |
oaire.fundingStream | Concurso para Financiamento de Projetos de Investigação Científica e Desenvolvimento Tecnológico em Todos os Domínios Científicos - 2020 | |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
person.familyName | Pinheiro | |
person.familyName | Guarino | |
person.familyName | Lages | |
person.familyName | Fonseca-Pinto | |
person.givenName | Rafael | |
person.givenName | Maria Pedro | |
person.givenName | Marlene | |
person.givenName | Rui | |
person.identifier.ciencia-id | 8513-F117-D554 | |
person.identifier.ciencia-id | F21A-BD01-2D52 | |
person.identifier.ciencia-id | C613-4639-10A8 | |
person.identifier.ciencia-id | 681D-C547-B184 | |
person.identifier.orcid | 0000-0002-2369-9016 | |
person.identifier.orcid | 0000-0001-6079-1105 | |
person.identifier.orcid | 0000-0002-7389-6368 | |
person.identifier.orcid | 0000-0001-6774-5363 | |
person.identifier.rid | B-5594-2015 | |
person.identifier.rid | K-9449-2014 | |
person.identifier.scopus-author-id | 57204116615 | |
person.identifier.scopus-author-id | 56348477000 | |
person.identifier.scopus-author-id | 26039086400 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
relation.isAuthorOfPublication | 06761113-497b-4db8-9d9e-2577c048fadb | |
relation.isAuthorOfPublication | f163d4df-1e45-4278-affa-5994f206becf | |
relation.isAuthorOfPublication | df975834-7d19-4530-834e-1dbd65272822 | |
relation.isAuthorOfPublication | 7eb9d123-1800-4afd-a2f6-91043353011b | |
relation.isAuthorOfPublication.latestForDiscovery | 06761113-497b-4db8-9d9e-2577c048fadb | |
relation.isProjectOfPublication | d421b07d-3471-4026-aa43-def80b8e142b | |
relation.isProjectOfPublication | aeb7e5aa-aa09-4407-8532-686e47e5f870 | |
relation.isProjectOfPublication.latestForDiscovery | d421b07d-3471-4026-aa43-def80b8e142b |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Prediabetes risk classification algorit...odies and K-means clustering technique.pdf
- Size:
- 1.92 MB
- Format:
- Adobe Portable Document Format
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.32 KB
- Format:
- Item-specific license agreed upon to submission
- Description: