Name: | Description: | Size: | Format: | |
---|---|---|---|---|
3.54 MB | Adobe PDF |
Authors
Advisor(s)
Abstract(s)
Os veículos elétricos, para além de cumprirem os requisitos comuns de segurança estrutural, possuem uma necessidade que se baseia na proteção adicional ao conjunto de baterias, devido à sua perigosidade quando danificadas. Por prevenção, as práticas comuns dos fabricantes de veículos elétricos, em caso de embate de pequena intensidade, promovem a substituição completa das baterias, por razões de segurança. Esta prática tem levado à consideração da perda total do veículo acidentado e colocação das baterias no percurso de reciclagem prematuro, dado ao seu período de vida útil projetado.
Para a resolução desta problemática, desenvolveu-se uma estrutura de alojamento de baterias, com o conceito híbrido, constituído por uma duas estruturas, uma interna de elevada resistência mecânica e uma exterior atenuadora de impacto, no caso desta última, que seja permitida a sua substituição, em caso de colisão e deformação. Para alcançar esse objetivo, em termos metodológicos, foram estudados os materiais para a produção das duas estruturas, com recurso a modelação através do software “Solidworks” e foram implementadas simulações em software “LS_DYNA”, para testagem de materiais e dos impactos nas zonas críticas do sistema híbrido de modo a determinar as capacidades destes em situações de colisão.
Dos resultados obtidos, permitiu concluir que o sistema híbrido resiste de forma eficiente a impactos laterais com velocidades até 5 Km/h. Para as restantes velocidades ocorreu deformação da estrutura supostamente “indeformável”. O impacto no plano inferior, demonstrou ser o mais vulnerável dos dois tipos estudados: Para todas as velocidades ocorre deformação significativa nessa estrutura. Contudo, os fundamentos para a implementação deste tipo de sistemas foram estabelecidos, e, com a alteração de alguns parâmetros estruturais e materiais, é evidente a potencialidade deste sistema para melhorar a sustentabilidade das baterias de alta tensão.
Electric vehicles, in addition to meeting common structural safety requirements, have an additional need for protecting their battery packs due to the risks associated with damage. As a precaution, common practices among electric vehicle manufacturers involve the complete replacement of the battery pack after minor collisions for safety reasons. This practice often results in the vehicle being declared a total loss and the premature recycling of the batteries, despite their projected service life. To address this issue, a hybrid battery housing structure was developed, consisting of two components: an internal structure with high mechanical resistance and an external impact-absorbing structure. The latter is designed to be replaceable in the event of a collision and deformation. Methodologically, materials for both structures were studied using modelling in “SolidWorks” and simulations were conducted in “LS-DYNA” software to test the materials and the impacts on critical areas of the hybrid system to assess its performance in collision scenarios. The results revealed that the hybrid system effectively withstands lateral impacts at speeds of up to 5 km/h. At higher speeds, deformation occurred in the supposedly “non-deformable” structure. For impacts on the underside of the system, it was found to be more vulnerable: significant deformation occurred at all speeds tested. However, the principles for implementing this type of system were established, and with adjustments to certain structural parameters and materials, the potential of this system to enhance the sustainability of high-voltage batteries is evident.
Electric vehicles, in addition to meeting common structural safety requirements, have an additional need for protecting their battery packs due to the risks associated with damage. As a precaution, common practices among electric vehicle manufacturers involve the complete replacement of the battery pack after minor collisions for safety reasons. This practice often results in the vehicle being declared a total loss and the premature recycling of the batteries, despite their projected service life. To address this issue, a hybrid battery housing structure was developed, consisting of two components: an internal structure with high mechanical resistance and an external impact-absorbing structure. The latter is designed to be replaceable in the event of a collision and deformation. Methodologically, materials for both structures were studied using modelling in “SolidWorks” and simulations were conducted in “LS-DYNA” software to test the materials and the impacts on critical areas of the hybrid system to assess its performance in collision scenarios. The results revealed that the hybrid system effectively withstands lateral impacts at speeds of up to 5 km/h. At higher speeds, deformation occurred in the supposedly “non-deformable” structure. For impacts on the underside of the system, it was found to be more vulnerable: significant deformation occurred at all speeds tested. However, the principles for implementing this type of system were established, and with adjustments to certain structural parameters and materials, the potential of this system to enhance the sustainability of high-voltage batteries is evident.
Description
Keywords
Impacto Bateria Elétrico Simulação Alojamento