Repository logo
 
Publication

A Hybrid AIS-SVM Ensemble Approach for Text Classification

dc.contributor.authorAntunes, Mário
dc.contributor.authorSilva, Catarina
dc.contributor.authorRibeiro, Bernardete
dc.contributor.authorCorreia, Manuel
dc.date.accessioned2025-12-12T09:55:24Z
dc.date.available2025-12-12T09:55:24Z
dc.date.issued2011
dc.description.abstractIn this paper we propose and analyse methods for expanding state-of-the-art performance on text classification. We put forward an ensemble-based structure that includes Support Vector Machines (SVM) and Artificial Immune Systems (AIS). The underpinning idea is that SVM-like approaches can be enhanced with AIS approaches which can capture dynamics in models. While having radically different genesis, and probably because of that, SVM and AIS can cooperate in a committee setting, using a heterogeneous ensemble to improve overall performance, including a confidence on each system classification as the differentiating factor. Results on the well-known Reuters-21578 benchmark are presented, showing promising classification performance gains, resulting in a classification that improves upon all baseline contributors of the ensemble committee.eng
dc.identifier.citationAntunes, M., Silva, C., Ribeiro, B., Correia, M. (2011). A Hybrid AIS-SVM Ensemble Approach for Text Classification. In: Dobnikar, A., Lotrič, U., Šter, B. (eds) Adaptive and Natural Computing Algorithms. ICANNGA 2011. Lecture Notes in Computer Science, vol 6594. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20267-4_36
dc.identifier.doi10.1007/978-3-642-20267-4_36
dc.identifier.isbn9783642202667
dc.identifier.isbn9783642202674
dc.identifier.issn0302-9743
dc.identifier.issn1611-3349
dc.identifier.urihttp://hdl.handle.net/10400.8/15001
dc.language.isoeng
dc.peerreviewedyes
dc.publisherSpringer Berlin Heidelberg
dc.relation.hasversionhttps://link.springer.com/chapter/10.1007/978-3-642-20267-4_36
dc.relation.ispartofLecture Notes in Computer Science
dc.relation.ispartofAdaptive and Natural Computing Algorithms
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectArtificial Immune System
dc.subjectSupport Vector Machine
dc.subjectText Classification
dc.subjectTunable Activation Threshold
dc.subjectEnsembles
dc.subjectHybrid System.
dc.titleA Hybrid AIS-SVM Ensemble Approach for Text Classificationeng
dc.typebook part
dspace.entity.typePublication
oaire.citation.endPage352
oaire.citation.startPage342
oaire.citation.titleAdaptive and Natural Computing Algorithms. ICANNGA 2011.
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
person.familyNameAntunes
person.givenNameMário
person.identifierR-000-NX4
person.identifier.ciencia-idAF10-7EDD-5153
person.identifier.orcid0000-0003-3448-6726
person.identifier.scopus-author-id25930820200
relation.isAuthorOfPublicatione3e87fb0-d1d6-44c3-985d-920a5560f8c1
relation.isAuthorOfPublication.latestForDiscoverye3e87fb0-d1d6-44c3-985d-920a5560f8c1

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
128.pdf
Size:
347.25 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.32 KB
Format:
Item-specific license agreed upon to submission
Description: