Repository logo
 
Publication

Factorization à la Dirac applied to the time-fractional telegraph equation

dc.contributor.authorFerreira, M.
dc.contributor.authorRodrigues, M.M.
dc.contributor.authorVieira, N.
dc.date.accessioned2025-11-05T16:44:22Z
dc.date.available2025-11-05T16:44:22Z
dc.date.issued2026-01
dc.description.abstractThis paper examines a coupled system of two-term time-fractional diffusion Dirac-type equations. The system is derived by factorizing the multi-dimensional time-fractional telegraph equation with Hilfer fractional derivatives, using the Dirac method and a triplet of Pauli matrices. Solutions are obtained using operational methods provided by the combination of the Fourier transform in the space variable and the Laplace transform in the time variable. Key results include the discovery of novel Fourier transform pairs. These pairs relate specific Fourier kernels of bivariate Mittag-Leffler functions to Fox H-functions of two variables. This allows to obtain explicit solutions of the system in both Fourier-time and space-time domains. The asymptotic behaviour of these solutions is rigorously analysed, and graphical representations are generated. Further, we show that the factorization allows for the use of alternative triplets of Pauli matrices yielding related solutions. The results obtained can be generalised to the case of 𝜓-Hilfer derivatives.eng
dc.description.sponsorshipThe work of the authors was supported by CIDMA under the Portuguese Foundation for Science and Technology (FCT,https://ror.org/00snfqn58) Multi-Annual Financing Program for R&D Units, grants UID/4106/2025 and UID/PRR/4106/2025.
dc.identifier.citationM. Ferreira, M.M. Rodrigues, N. Vieira, Factorization à la Dirac applied to the time-fractional telegraph equation, Communications in Nonlinear Science and Numerical Simulation, Volume 152, Part E, 2026, 109420, ISSN 1007-5704, https://doi.org/10.1016/j.cnsns.2025.109420.
dc.identifier.doi10.1016/j.cnsns.2025.109420
dc.identifier.issn1007-5704
dc.identifier.urihttp://hdl.handle.net/10400.8/14530
dc.language.isoeng
dc.peerreviewedyes
dc.publisherElsevier BV
dc.relation.hasversionhttps://www.sciencedirect.com/science/article/pii/S1007570425008299
dc.relation.ispartofCommunications in Nonlinear Science and Numerical Simulation
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectDirac factorization method
dc.subjectTime-fractional telegraph equation
dc.subjectTime-fractional diffusion equation
dc.subjectFractional calculus
dc.subjectHilfer derivatives
dc.subjectMittag-Leffler functions
dc.subjectFox H-functions
dc.titleFactorization à la Dirac applied to the time-fractional telegraph equationeng
dc.typejournal article
dspace.entity.typePublication
oaire.citation.titleCommunications in Nonlinear Science and Numerical Simulation
oaire.citation.volume152
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
person.familyNameFerreira
person.givenNameManuel
person.identifier.ciencia-id2B1A-16D4-80DA
person.identifier.orcid0000-0002-4642-4605
person.identifier.ridA-2322-2012
person.identifier.scopus-author-id7402787382
relation.isAuthorOfPublication69895f61-97d7-47e5-93e3-ede7fb54631c
relation.isAuthorOfPublication.latestForDiscovery69895f61-97d7-47e5-93e3-ede7fb54631c

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S1007570425008299-main.pdf
Size:
12.39 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.32 KB
Format:
Item-specific license agreed upon to submission
Description: