Name: | Description: | Size: | Format: | |
---|---|---|---|---|
20.03 MB | Adobe PDF |
Authors
Advisor(s)
Abstract(s)
O desenvolvimento de peças plásticas de alta precisão é um desafio constante na indústria
automóvel, especialmente quando se trata de componentes óticos utilizados em sistemas de
iluminação e visibilidade. Este tipo de peça exige um rigoroso controlo de qualidade
dimensional e geométrica, dado que qualquer variação pode ter um impacto significativo no
seu desempenho ótico.
O presente trabalho aborda um caso real de uma empresa, uma lente espessa ótica plástica,
que apresenta uma depressão inesperada resultante de um ponto quente no processo de
produção. Este defeito está localizado numa face funcional do ponto de vista ótico que
deveria possuir um elevado grau de planicidade, o que não se verificando, pode comprometer
a funcionalidade ótica da lente
Considerando que o molde já existe, a hipótese inicial mais viável para tentar ultrapassar o
problema será o reajuste das variáveis do processo de injeção, solução que se verificou não
ser suficiente para resolver o problema, considerando-se então a reengenharia do molde com
a adoção de canais conformáveis de arrefecimento.
A abordagem inicial tanto como a abordagem da reengenharia do molde foi devidamente
suportada pela simulação numérica do processo de injeção, observando as condições de
fronteira, cargas e materiais inerentes a cada abordagem.
A utilização de canais conformáveis é viabilizada com a aplicação da tecnologia SLM em
insertos moldantes, cujos custos de produção e lead time são analisados em detalhe para
determinar o break-even da sua utilização.
The development of high-precision plastic parts is a constant challenge in the automotive industry, especially when it comes to optical components used in lighting and visibility systems. This type of part requires rigorous dimensional and geometric quality control, since any variation can have a significant impact on its optical performance. This work addresses a real case of a company, a thick plastic optical lens, which presents an unexpected depression resulting from a hot spot in the production process. This defect is located on a functional face from an optical point of view that should have a high degree of flatness, which, if not, could compromise the optical functionality of the lens. Considering that the mould already exists, the most viable initial hypothesis to try to overcome the problem would be to readjust the variables of the injection process, a solution that was found to be insufficient to solve the problem, thus considering the reengineering of the mould with the adoption of conformable cooling channels. The initial approach, as well as the mould reengineering approach, was duly supported by numerical simulation of the injection process, observing the boundary conditions, loads and materials inherent to each approach. The use of conformable channels is made possible by applying SLM technology to mould inserts, whose production costs and lead time are analysed in detail to determine the break even point of their use.
The development of high-precision plastic parts is a constant challenge in the automotive industry, especially when it comes to optical components used in lighting and visibility systems. This type of part requires rigorous dimensional and geometric quality control, since any variation can have a significant impact on its optical performance. This work addresses a real case of a company, a thick plastic optical lens, which presents an unexpected depression resulting from a hot spot in the production process. This defect is located on a functional face from an optical point of view that should have a high degree of flatness, which, if not, could compromise the optical functionality of the lens. Considering that the mould already exists, the most viable initial hypothesis to try to overcome the problem would be to readjust the variables of the injection process, a solution that was found to be insufficient to solve the problem, thus considering the reengineering of the mould with the adoption of conformable cooling channels. The initial approach, as well as the mould reengineering approach, was duly supported by numerical simulation of the injection process, observing the boundary conditions, loads and materials inherent to each approach. The use of conformable channels is made possible by applying SLM technology to mould inserts, whose production costs and lead time are analysed in detail to determine the break even point of their use.
Description
Keywords
Automóvel Lente Moldação por injeção Simulação numérica Canais conformáveis SLM