Repository logo
 
Publication

A Fractional Analysis in Higher Dimensions for the Sturm-Liouville Problem

dc.contributor.authorFerreira, Milton
dc.contributor.authorRodrigues, M. Manuela
dc.contributor.authorVieira, Nelson
dc.date.accessioned2022-08-05T13:19:57Z
dc.date.available2022-08-05T13:19:57Z
dc.date.issued2021
dc.description.abstractIn this work, we consider the n-dimensional fractional Sturm-Liouville eigenvalue problem, by using fractional versions of the gradient operator involving left and right Riemann-Liouville fractional derivatives. We study the main properties of the eigenfunctions and the eigenvalues of the associated fractional boundary problem. More precisely, we show that the eigenfunctions are orthogonal and the eigenvalues are real and simple. Moreover, using techniques from fractional variational calculus, we prove in the main result that the eigenvalues are separated and form an infinite sequence, where the eigenvalues can be ordered according to increasing magnitude. Finally, a connection with Clifford analysis is established.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationFerreira, M., Manuela Rodrigues, M. & Vieira, N. (2021). A fractional analysis in higher dimensions for the Sturm-Liouville problem. Fractional Calculus and Applied Analysis, 24(2), 585-620. https://doi.org/10.1515/fca-2021-0026pt_PT
dc.identifier.doi10.1515/fca-2021-0026pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.8/7510
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherDe Gruyterpt_PT
dc.relationCenter for Research and Development in Mathematics and Applications
dc.relation.ispartofseries2;
dc.relation.publisherversionhttps://www.degruyter.com/document/doi/10.1515/fca-2021-0026/htmlpt_PT
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectFractional derivativespt_PT
dc.subjectFractional Sturm-Liouville problempt_PT
dc.subjectFractional variational calculuspt_PT
dc.subjectEigenvalue problempt_PT
dc.subjectEigenfunctionspt_PT
dc.subjectFractional Clifford analysispt_PT
dc.titleA Fractional Analysis in Higher Dimensions for the Sturm-Liouville Problempt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleCenter for Research and Development in Mathematics and Applications
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F04106%2F2020/PT
oaire.citation.endPage620pt_PT
oaire.citation.startPage585pt_PT
oaire.citation.titleFractional Calculus and Applied Analysispt_PT
oaire.citation.volume24pt_PT
oaire.fundingStream6817 - DCRRNI ID
person.familyNameFerreira
person.familyNameRodrigues
person.familyNameVieira
person.givenNameMilton
person.givenNameM. Manuela
person.givenNameNelson
person.identifier.ciencia-idCA19-2009-F26D
person.identifier.ciencia-id461D-A5E2-23BE
person.identifier.ciencia-id9418-DDFB-DE9D
person.identifier.orcid0000-0003-1816-8293
person.identifier.orcid0000-0002-8834-5841
person.identifier.orcid0000-0001-8756-4893
person.identifier.ridA-2004-2015
person.identifier.ridH-9130-2013
person.identifier.scopus-author-id12144179800
person.identifier.scopus-author-id22835991500
person.identifier.scopus-author-id55576073000
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublicationb1460cdc-4ced-46c6-a637-68b425d104dc
relation.isAuthorOfPublication57767487-249d-4111-a6c5-a22fed15d8ea
relation.isAuthorOfPublicationf530f82c-8351-4c64-a33e-4c34fe4ac22a
relation.isAuthorOfPublication.latestForDiscoveryb1460cdc-4ced-46c6-a637-68b425d104dc
relation.isProjectOfPublication198b0a26-89c6-4507-9459-313b8f692514
relation.isProjectOfPublication.latestForDiscovery198b0a26-89c6-4507-9459-313b8f692514

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Higher_Fract_Sturm_Liouville_Problem_Post_Print.pdf
Size:
469.31 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.32 KB
Format:
Item-specific license agreed upon to submission
Description: