Publication
A Fractional Analysis in Higher Dimensions for the Sturm-Liouville Problem
dc.contributor.author | Ferreira, Milton | |
dc.contributor.author | Rodrigues, M. Manuela | |
dc.contributor.author | Vieira, Nelson | |
dc.date.accessioned | 2022-08-05T13:19:57Z | |
dc.date.available | 2022-08-05T13:19:57Z | |
dc.date.issued | 2021 | |
dc.description.abstract | In this work, we consider the n-dimensional fractional Sturm-Liouville eigenvalue problem, by using fractional versions of the gradient operator involving left and right Riemann-Liouville fractional derivatives. We study the main properties of the eigenfunctions and the eigenvalues of the associated fractional boundary problem. More precisely, we show that the eigenfunctions are orthogonal and the eigenvalues are real and simple. Moreover, using techniques from fractional variational calculus, we prove in the main result that the eigenvalues are separated and form an infinite sequence, where the eigenvalues can be ordered according to increasing magnitude. Finally, a connection with Clifford analysis is established. | pt_PT |
dc.description.version | info:eu-repo/semantics/publishedVersion | pt_PT |
dc.identifier.citation | Ferreira, M., Manuela Rodrigues, M. & Vieira, N. (2021). A fractional analysis in higher dimensions for the Sturm-Liouville problem. Fractional Calculus and Applied Analysis, 24(2), 585-620. https://doi.org/10.1515/fca-2021-0026 | pt_PT |
dc.identifier.doi | 10.1515/fca-2021-0026 | pt_PT |
dc.identifier.uri | http://hdl.handle.net/10400.8/7510 | |
dc.language.iso | eng | pt_PT |
dc.peerreviewed | yes | pt_PT |
dc.publisher | De Gruyter | pt_PT |
dc.relation | Center for Research and Development in Mathematics and Applications | |
dc.relation.ispartofseries | 2; | |
dc.relation.publisherversion | https://www.degruyter.com/document/doi/10.1515/fca-2021-0026/html | pt_PT |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | pt_PT |
dc.subject | Fractional derivatives | pt_PT |
dc.subject | Fractional Sturm-Liouville problem | pt_PT |
dc.subject | Fractional variational calculus | pt_PT |
dc.subject | Eigenvalue problem | pt_PT |
dc.subject | Eigenfunctions | pt_PT |
dc.subject | Fractional Clifford analysis | pt_PT |
dc.title | A Fractional Analysis in Higher Dimensions for the Sturm-Liouville Problem | pt_PT |
dc.type | journal article | |
dspace.entity.type | Publication | |
oaire.awardTitle | Center for Research and Development in Mathematics and Applications | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F04106%2F2020/PT | |
oaire.citation.endPage | 620 | pt_PT |
oaire.citation.startPage | 585 | pt_PT |
oaire.citation.title | Fractional Calculus and Applied Analysis | pt_PT |
oaire.citation.volume | 24 | pt_PT |
oaire.fundingStream | 6817 - DCRRNI ID | |
person.familyName | Ferreira | |
person.familyName | Rodrigues | |
person.familyName | Vieira | |
person.givenName | Milton | |
person.givenName | M. Manuela | |
person.givenName | Nelson | |
person.identifier.ciencia-id | CA19-2009-F26D | |
person.identifier.ciencia-id | 461D-A5E2-23BE | |
person.identifier.ciencia-id | 9418-DDFB-DE9D | |
person.identifier.orcid | 0000-0003-1816-8293 | |
person.identifier.orcid | 0000-0002-8834-5841 | |
person.identifier.orcid | 0000-0001-8756-4893 | |
person.identifier.rid | A-2004-2015 | |
person.identifier.rid | H-9130-2013 | |
person.identifier.scopus-author-id | 12144179800 | |
person.identifier.scopus-author-id | 22835991500 | |
person.identifier.scopus-author-id | 55576073000 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
rcaap.rights | openAccess | pt_PT |
rcaap.type | article | pt_PT |
relation.isAuthorOfPublication | b1460cdc-4ced-46c6-a637-68b425d104dc | |
relation.isAuthorOfPublication | 57767487-249d-4111-a6c5-a22fed15d8ea | |
relation.isAuthorOfPublication | f530f82c-8351-4c64-a33e-4c34fe4ac22a | |
relation.isAuthorOfPublication.latestForDiscovery | b1460cdc-4ced-46c6-a637-68b425d104dc | |
relation.isProjectOfPublication | 198b0a26-89c6-4507-9459-313b8f692514 | |
relation.isProjectOfPublication.latestForDiscovery | 198b0a26-89c6-4507-9459-313b8f692514 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Higher_Fract_Sturm_Liouville_Problem_Post_Print.pdf
- Size:
- 469.31 KB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.32 KB
- Format:
- Item-specific license agreed upon to submission
- Description: