Loading...
Research Project
Microelectromechanical Systems Research Unit
Funder
Authors
Publications
Tribological behavior of bioactive multi-material structures targeting orthopedic applications
Publication . Costa, M.M.; Bartolomeu, F.; Alves, N.; Silva, F.S.; Miranda, G.
The following study proposes a multi-material solution in which Ti6Al4V cellular structures produced by Selective Laser Melting are impregnated with bioactive materials (hydroxyapatite or β-tricalcium phosphate) using press and sintering technique. To assess the tribological response of these structures, an alumina plate was used as a counterpart in a flat-on-flat reciprocating sliding test. Ti6Al4V cellular structures impregnated with bioactive materials displayed the highest wear resistance when compared with the unreinforced structures. Among the bioactive structures, Ti6Al4V cellular structures impregnated with βTCP were the ones with higher wear resistance, having the lowest weight loss. Hence, these structures are promising multifunctional solutions for load-bearing applications by gathering suitable mechanical properties (strength and stiffness); bioactive properties and in addition an improved wear performance.
Corrosion behaviour of PEEK or β-TCP-impregnated Ti6Al4V SLM structures targeting biomedical applications
Publication . Costa, M.M.; Dantas, T.A.; Bartolomeu, F.; Alves, N.; Silva, F.S.; Miranda, G.; Toptan, F.
Ti6Al4V cellular structures were produced by selective laser melting (SLM) and then filled either with beta-tricalcium phosphate (β-TCP) or PEEK (poly-ether-ether-ketone) through powder metallurgy techniques, to improve osteoconductivity and wear resistance. The corrosion behavior of these structures was explored considering its importance for the long-term performance of implants. Results revealed that the incorporation of open cellular pores induced higher electrochemical kinetics when being compared with dense structures. The impregnation of β-TCP and PEEK led to the creation of voids or gaps between the metallic matrix and the impregnated material which also influenced the corrosion behavior of the cellular structures.
Engineering the elastic modulus of NiTi cellular structures fabricated by selective laser melting
Publication . Bartolomeu, F.; Costa, M.M.; Alves, N.; Miranda, G.; Silva, F.S.
Nickel-titanium (NiTi) cellular structures are a very promising solution to some issues related to orthopaedic
implant failure. These structures can be designed and fabricated to simultaneously address a combination of
mechanical and physical properties, such as elastic modulus, porosity, wear and corrosion resistance, biocompatibility and appropriate biological environment. This ability can enhance the modest interaction currently existing between metallic dense implants and surrounding bone tissue, allowing long-term successful orthopaedic implants. For that purpose, NiTi cellular structures with different levels of porosity intended to reduce the elastic modulus were designed, modelled, selective laser melting (SLM) fabricated and characterized. Significant differences were found between the CAD design and the SLM-produced NiTi structures by performing systematic image analysis. This work proposes designing guidelines to anticipate and correct the systematic differences between CAD and produced structures. Compressive tests were carried out to estimate the elastic modulus of the produced structures and finite element analyses were performed, for comparison purposes. Linear correlations were found for the dimensions, porosity, and elastic modulus when comparing the CAD design with the SLM structures. The produced NiTi structures exhibit elastic moduli that match that of bone tissue, which is a good indication of the potential of these structures in orthopaedic implants.
Additive manufacturing of NiTi-Ti6Al4V multi-material cellular structures targeting orthopedic implants
Publication . Bartolomeu, F.; Costa, M.M.; Alves, N.; Miranda, G.; Silva, F.S.
The amount of hip revision surgeries is significantly increasing due to the loss of fixation between implant and bone, that leads to implant failure. The stiffness mismatch between Ti6Al4V hip implants and bone tissue, the non-uniform implant-bone contact pressure, and the poor wear resistance of Ti6Al4V are pointed as three critical issues that contribute to these implant’s failure. In this study, a multi-material design and fabrication concept was exploited aiming to change traditional manufacturing paradigms, by allocating different biomaterials in a single component targeting a multi-functional hip implant. Selective Laser Melting technology was explored to fabricate NiTi-Ti6Al4V multi-material cellular structures with a Ti6Al4V inner region and a NiTi outer region. This work was focused on the SLM fabrication and processing parameters validation on a commercial SLM equipment. The morphological analyses allowed to assess a successful solidification and bond between NiTi and Ti6Al4V materials in the transition region. The shear tests revealed a high bond strength of the transition region with an average strength of 33 MPa. The nano-indentation results showed that the Ti6Al4V region exhibits a higher hardness and elastic modulus when compared with the NiTi region. This work is a part of a broader objective that aims to create a NiTi-Ti6Al4V multi-material and cellular structured hip implant capable to provide customized stiffness, superior wear resistance and a controlled NiTi outer region volume change.
Organizational Units
Description
Keywords
Contributors
Funders
Funding agency
Fundação para a Ciência e a Tecnologia
Funding programme
6817 - DCRRNI ID
Funding Award Number
UID/EEA/04436/2019