Repository logo
 
Loading...
Project Logo
Research Project

Untitled

Authors

Publications

Cu(II) complexes derived from N-carboxymethyl and N-carboxyethyl amino acids as catalysts for asymmetric oxidative coupling of 2-naphthol
Publication . Adão, Pedro; Teixeira, Carlos M.; Carvalho, M. Fernanda N.N.; Kuznetsov, Maxim L.; Gomes, Clara S.B.; Pessoa, João Costa
The synthesis, characterization and catalytic performance of chiral Cu(II) complexes derived from N-carboxymethylated and N-carboxyethylated amino acids is reported. The ligand precursors are prepared by single step N-alkylation of the sodium salts of the appropriate chiral amino acid with either sodium chloroacetate or sodium 3-chloropropionate in water. The Cu(II) complexes are obtained upon reaction of Cu(CH3COO)2 with the aqueous or alcoholic suspension of the suitable ligand under vigorous stirring or ultrasound irradiation at room temperature. The Cu(II) compounds are characterised by EPR, UV–vis, circular dichroism and ESI-MS. The molecular structures of two of the prepared complexes are also obtained by single-crystal X-ray diffraction analysis. The catalytic activity of the complexes in the asymmetric oxidative coupling of 2-naphthol is described. All compounds exhibit moderate activity, selectivity and enantioselectivity in ethanol/water mixtures, under aerobic conditions and using potassium iodide as additive. The yields of 1,1′-bi-2-naphthol (BINOL) reached 50% under the optimal conditions, while enantiomeric excesses reached ca. 48%. The effect of variables such as ligand substituents, solvent, temperature and additives on the catalytic activity is also described. In the absence of a base, the complexes only show catalytic activity in the presence of alkali metal iodide such as KI. Details of the oxidative coupling mechanism are studied using spectroscopic and electrochemical methodologies.
Enhancement of the antioxidant and antimicrobial activities of porphyran through chemical modification with tyrosine derivatives
Publication . Adão, Pedro; Reboleira, João; Teles, Marco; Santos, Beatriz; Ribeiro, Nádia; Teixeira, Carlos M.; Guedes, Mafalda; Pessoa, João Costa; Bernardino, Susana M.
The chemical modification of porphyran hydrocolloid is attempted, with the objective of enhancing its antioxidant and antimicrobial activities. Sulfated galactan porphyran is obtained from commercial samples of the red algae Porphyra dioica using Soxhlet extraction with water at 100ºC and precipitation with isopropyl alcohol. The extracted porphyran is then treated with modified L-tyrosines in aqueous medium in the presence of NaOH, at ca. 70ºC. The modified tyrosines L1 and L2 are prepared through a Mannich reaction with either thymol or 2,4-di-tert-butylphenol, respectively. While the reaction with 2,4-di-tert-butylphenol yields the expected tyrosine derivative, a mixture of products is obtained with thymol. The resulting polysaccharides are structurally characterized and the respective antioxidant and antimicrobial activities are determined. Porphyran treated with the N-(2-hydroxy-3,5-di-tert-butyl-benzyl)-L-tyrosine derivative, POR-L2, presents a noticeable superior radical scavenging and antioxidant activity compared to native porphyran, POR. Furthermore, it exhibited some antimicrobial activity against S. aureus. The surface morphology of films prepared by casting with native and modified porphyrans is studied by SEM/EDS. Both POR and POR-L2 present potential applicability in the production of films and washable coatings for food packaging with improved protecting characteristics.

Organizational Units

Description

Keywords

Contributors

Funders

Funding agency

Fundação para a Ciência e a Tecnologia

Funding programme

3599-PPCDT

Funding Award Number

RECI/QEQ-QIN/0189/2012

ID