Repository logo
 

Search Results

Now showing 1 - 2 of 2
  • Sheep Gait Biomechanics and the Assessment of Musculoskeletal Conditions: A Systematic Review
    Publication . Silva, Rui; Dimas, Ivo Santos; Fernandez, Justin W.; Alves, Nuno; Morouço, Pedro; Maurício, Ana Colette; Veloso, António; Sandra, Amado
    In recent years, sheep have been reported as the ideal animal model to study osteoporosis, hence it is important to identify instruments, tools and ideal parameters needed to assess the effects of different treatments. In previous studies conducted in other animal models with osteoporosis, the most common parameters used for evaluation concerned primarily bone properties, such as the dual X-ray absorptiometry. However, biomechanical gait analysis as an integrative functional parameter and a non-invasive method, will be an important tool in research and clinical applications. This research review was performed using the PubMed database and included studies related to sheep with outcome measures concerning functional performance assessed during gait in vivo; and excluded studies related with cardiovascular disease and sperm properties, which include other animal species, with outcomes not related with functional locomotor evaluation. Only studies related with bone properties were analyzed. The most frequent and relevant included parameters were the following: mean peak vertical ground force reaction, gait cycle and stance/swing phase duration, percentage of stance/swing phase in a gait cycle, stride length and the stifle joint angles during a gait cycle. Gait biomechanical parameters have been established for the assessment of some clinical orthopedic condition using sheep models but not currently for osteoporosis.
  • A review of additive manufacturing studies for producing customized ankle-foot orthoses
    Publication . Silva, Rui; Veloso, António; Alves, Nuno; Fernandes, Cristiana; Morouço, Pedro
    Ankle-foot orthoses (AFO) are prescribed to improve the patient’s quality of life. Supporting weak muscles or restraining spastic muscles leads to smoother and more stable locomotion. Commonly, AFO are made using thermoplastic vacuum forming, which requires a long time for production and has limited design options. Additive manufacturing (AM) can solve this problem, leading to a faster and cheaper solution. This review aimed to investigate what is the state-of-art using AM for AFO. Evaluating the used manufacturing processes, customization steps, mechanical properties, and biomechanical features in humans would provide significant insights for further research. The database searches combined AM and AFO with no year or publication type restrictions. Studies must have examined outcomes on human participants with the orthoses built by AM. Other types of orthotic devices or different manufacturing techniques were excluded. Nineteen studies met the inclusion criteria. As stated by having all studies conducted in the last nine years, this is a very recent domain. Different AM processes have been used, with the majority relying on Fused Deposition Modeling. Overall, the manuscripts’ quality is deficient, which is critical to promoting further studies with higher samples. Except for one paper, AM-printed AFO was comparable or superior to the thermoplastic vacuum forming AFO in mechanical tests, kinematics, kinetics, and participant feedback.