Repository logo
 

Search Results

Now showing 1 - 2 of 2
  • Advanced face mask filters based on PCL electrospun meshes dopped with antimicrobial MgO and CuO nanoparticles
    Publication . Ferreira, Carolina A. M.; Guerreiro, Sara F.C.; Valente, Joana F. A.; Patrício, Tatiana M.F.; Alves, Nuno; Mateus, Artur; Dias, Juliana R.
    The pandemic situation caused by coronavirus clearly demonstrated the need for alternatives able to protect the respiratory tract and inactivate the infectious agents. Based on this, antibacterial face-mask filters of polycaprolactone (PCL) dopped with magnesium oxide (MgO) and copper oxide (CuO) nanoparticles (NPs) were produced using an electrospinning technique. A morphological analysis of electrospun meshes evaluated the success of nanoparticles’ incorporation as well as the average fibers’ diameters (481 +- 272 nm). The performance of electrospun nanofibers was also assessed in terms of tensile strength (0.88 +- 0.25 MPa), water vapor permeability (11,178.66 +- 35.78 g.m-2.day-1), stability under wet conditions and antibacterial activity according to the standard guidelines. The filters showed structural stability up to 2 h of washing and improved antibacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) for optimized concentrations of MgO and CuO NPs. Overall, electrospun meshes with antibacterial activity were successfully developed for advanced filtering applications.
  • Box-Behnken Design a Key Tool to Achieve Optimized PCL/Gelatin Electrospun Mesh, Macromolecular Materials and Engineering
    Publication . Guerreiro, S.F.C.; Valente, J.F.A.; Dias, J.R.; Alves, N.
    Hybrid electrospun nanofibers of polycaprolactone (PCL)/gelatin are considered as drug-delivery systems for increasing the treatment efficacy in superficial (skin) wounds. Continuous delivery of therapeutic agents, skin extracellular matrix similarity, management of wound exudate, and antimicrobial barrier effect are the major advantages of electrospun nanofibers in skin applications. Additionally, combining the favorable properties of PCL and gelatin, regarding their biocompatibility, biodegradability and mechanical performance have been revealed promising parameters to be considered for blend in hybrid structures. However, the usual optimization protocol of nanofibers’ production in electrospinning is based on the observation of one-variable-attime being this methodology expensive and time-consuming. Therefore, in this research work, a statistical model based on four input variables namely, the flow rate, the needle-working distance, the applied voltage, and the ratio of PCL in the solution, is developed to predict the behavior of nanofibers. The performance of nanofibers is monitored by measurements of fiber’s diameter, mesh’s thickness, and mesh’s permeability. Overall, the model showed to be statistically significant (p-value < 0.05) and an independent analysis validated the predicted response for optimal condition. Finally, a delivery study is performed to evaluate the electrospun mesh performance as a drug carrier.