Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 2 of 2
  • Predictive models for physical and mechanical properties of 316L stainless steel produced by selective laser melting
    Publication . Miranda, G.; Faria, S.; Bartolomeu, F.; Pinto, Elodie; Madeira, S.; Mateus, Artur; P.Carreira; Alves, Nuno; Silva, F.S.; Carvalho, O.
    Selective Laser Melting (SLM) processing parameters are known to greatly influence 316L stainless steel final properties. A simple energy density calculation is insufficient for explaining mechanical and physical properties as well as microstructural characteristics, which are known to significantly influence these parts performance. In fact, parts produced by using different combinations of processing parameters, even presenting similar energy density, can display different properties. Thus, it is necessary to assess their influence as isolated parameters but also their interactions. This work presents a study on the influence of several SLM processing parameters (laser power, scanning speed and scanning spacing) on density, hardness and shear strength of 316L stainless steel. The influence of these processing parameters on the abovementioned properties is assessed by using statistical analysis. In order to find the significant main factors and their interactions, analysis of variance (ANOVA) is used. Furthermore, in order to assess the effect of the part building orientation, two different building strategies were tested. The influence of these processing parameters on shear strength, hardness and density were assessed for the two building strategies, thus resulting six different models that can be used as predictive design tools. The microstructures experimentally obtained were analyzed, discussed and correlated with the obtained models.
  • Tribological behavior of Ti6Al4V cellular structures produced by Selective Laser Melting
    Publication . Bartolomeu, F.; Sampaio, M; Carvalho, O.; Pinto, E.; Alves, N.; Gomes, J. R.; Silva, F. S.; Miranda, G.
    Additive manufacturing (AM) technologies enable the fabrication of innovative structures with complex geometries not easily manufactured by traditional processes. Regarding metallic cellular structures with tailored/customized mechanical and wear performance aiming to biomedical applications, Selective Laser Melting (SLM) is a remarkable solution for their production. Focusing on prosthesis and implants, in addition to a suitable Young's modulus it is important to assess the friction response and wear resistance of these cellular structures in a natural environment. In this sense, five cellular Ti6Al4V structures with different open-cell sizes (100–500 μm) were designed and produced by SLM. These structures were tribologicaly tested against alumina using a reciprocating sliding ball-on-plate tribometer. Samples were submerged in Phosphate Buffered Saline (PBS) fluid at 37 °C, in order to mimic in some extent the human body environment. The results showed that friction and wear performance of Ti6Al4V cellular structures is influenced by the structure open-cell size. The higher wear resistance was obtained for structures with 100 μm designed open-cell size due to the higher apparent area of contact to support tribological loading.