Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 2 of 2
  • On the formability, geometrical accuracy, and surface quality of sheet metal parts produced by SPIF
    Publication . Alves, Maria; Silva, M. B.; Alves, L. M.; Martins, P. A. F.; Xiaoyuan He; Huimin Xie; YiLan Kang
    Conventional sheet metal forming processes are not suitable for flexible small-batch production and, therefore, are not appropriate for the growing agile manufacturing trends requiring very short life-cycles, development and production lead times. In fact, the present need for flexible sheet metal forming techniques requires the development of innovative technological solutions that are capable of reducing the fixed and capital costs of sheet metal forming to a level where small-batch production becomes economically feasible. Single point incremental forming (SPIF) is a new sheet metal forming process with a high potential economic payoff for rapid prototyping applications and for small quantity production. In general terms a typical SPIF set-up makes use of a small number of low cost active tools components; (i) a blankholder, (ii) a backing plate and (iii) a single point forming tool. The tool path is generated in a CNC machining center and during the process there is no backup die supporting the back surface of the sheet. Despite the contributions of many researchers on the development of industrial applications and better characterization of the forming limits of the process, several key topics related to the mechanics of deformation, likely mode of failure, geometric accuracy and surface quality of the formed parts remain little understood and scarcely systematized. This paper attempts to provide new contributions about the abovementioned issues by means of a comprehensive experimental investigation performed under laboratory controlled conditions.
  • DMLS technology for automotive tooling
    Publication . Leal, R.; Barreiros, Fatima; Alves, M.L.; Romeiro, F.; Vasco, J.; Santos, M.; Marto, C.
    The automotive industry is challenged every day, with companies competing and developing new models and facelifts in short term, requiring new tools or tool reshaping. Concerning the current world economic scenario, decreasing time-for-tooling becomes as important as decreasing time-to-market. Such scenario opens up the horizons for new manufacturing approaches like additive manufacturing. In this case-study, additive manufacturing is applied for tooling up a stamping process for the production of body panels for the automotive industry. This approach enables the manufacturing of stamping tool inserts with similar high performance alloy steel as in conventional tooling, although, without any loss of tool properties and saving a significant part of the tool manufacturing time. The evaluation of the tool performance and tool life estimation was carried out based on three point bending fatigue tests using specimens manufactured by the same additive process and using the same powder material. From these data, it was possible to establish realistic scenarios for the use of additive tooling and to evaluate its feasibility on the automotive industry.