Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 3 of 3
  • Development of novel alginate based hydrogel films for wound healing applications
    Publication . Pereira, Rúben; Carvalho, Anabela; Vaz, Daniela C.; Gil, M. H.; Mendes, Ausenda; Bártolo, Paulo
    Alginate and Aloe vera are natural materials widely investigated and used in the biomedical field. In this research work, thin hydrogel films composed by alginate and Aloe vera gel in different proportions (95:5, 85:15 and 75:25, v/v) were prepared and characterized. The films were evaluated regarding the light transmission behavior, contact angle measurements, and chemical, thermal and mechanical properties. These thin hydrogel films, prepared by crosslinking reaction using 5% calcium chloride solution, were also investigated relatively to their water solubility and swelling behavior. Results showed that Aloe vera improved the transparency of the films, as well their thermal stability. The developed films present adequate mechanical properties for skin applications, while the solubility studies demonstrated the insolubility of the films after 24 h of immersion in distilled water. The water absorption and swelling behavior of these films were greatly improved by the increase in Aloe vera proportion.
  • Optimization of Scaffolds in Alginate for Biofabrication by Genetic Algorithms
    Publication . Rezende, Rodrigo; Rezende, Mylene; Bártolo, Paulo; Mendes, Ausenda; Filho, Rubens Maciel; Bartolo, Paulo; Mendes, Ausenda
    With an increasing in the rate of transplants due to damaged or affected tissues or organs by accidents or diseases and also by the aging of the population in many countries as Brazil, have motivated the research of some novel and alternative ways focused on restoring and replacing tissues. Biofabrication by means of Rapid Prototyping techniques can help in the fashioning and final production of scaffolds devoted to support and stimulate the growth of new tissues. For soft tissues, a biomaterial known as Alginate has been studied and used as raw-material for scaffolds fabrication. A scaffold must guarantee good strength and stiffness at the same time the material degrades gradually. In this work, a single mathematical model experimentally obtained that describes an interesting mechanical behavior of the degradation of alginated-scaffolds is developed. The optimization process scheme using Genetic Algorithms to maximize the elastic modulus and therefore to aid the design of scaffolds in alginate is proposed. The optimization is very welcome to tissue engineering and Biofabrication.