Loading...
7 results
Search Results
Now showing 1 - 7 of 7
- A scaling analysis in the SIRI epidemiological modelPublication . Pinto, Alberto; Stollenwerk, Nico; Gouveia Martins, José Maria; Martins, JoséFor the spatial stochastic epidemic reinfection model SIRI, where susceptibles S can become infected I , then recover and remain only partial immune against reinfection R, we determine the phase transition lines using pair approximation for the moments derived from the master equation. We introduce a scaling argument that allows us to determine analytically an explicit formula for these phase transition lines and prove rigorously the heuristic results obtained previously.
- The Higher Moments Dynamic on SIS ModelPublication . Pinto, Alberto; Gouveia Martins, José Maria; Stollenwerk, NicoThe basic contact process or the SIS model is a well known epidemic process and have been studied for a wide class of people. In an epidemiological context, many authors worked on the SIS model considering only the dynamic of the first moments of infecteds, i.e., the mean value and the variance of the infected individuals. In this work, we study not only the dynamic of the first moments of infecteds but also on the dynamic of the higher moments. Recursively, we consider the dynamic equations for all the moments of infecteds and, applying the moment closure approximation, we obtain the stationary states of the state variables. We observe that the stationary states of the SIS model, in the moment closure approximation, can be used to obtain good approximations of the quasi-stationary states of the SIS model.
- The Value of Information Searching against Fake NewsPublication . Martins, José; Pinto, AlbertoInspired by the Daley-Kendall and Goffman-Newill models, we propose an Ignorant-Believer-Unbeliever rumor (or fake news) spreading model with the following characteristics: (i) a network contact between individuals that determines the spread of rumors; (ii) the value (cost versus benefit) for individuals who search for truthful information (learning); (iii) an impact measure that assesses the risk of believing the rumor; (iv) an individual search strategy based on the probability that an individual searches for truthful information; (v) the population search strategy based on the proportion of individuals of the population who decide to search for truthful information; (vi) a payoff for the individuals that depends on the parameters of the model and the strategies of the individuals. Furthermore, we introduce evolutionary information search dynamics and study the dynamics of population search strategies. For each value of searching for information, we compute evolutionarily stable information (ESI) search strategies (occurring in non-cooperative environments), which are the attractors of the information search dynamics, and the optimal information (OI) search strategy (occurring in (eventually forced) cooperative environments) that maximizes the expected information payoff for the population. For rumors that are advantageous or harmful to the population (positive or negative impact), we show the existence of distinct scenarios that depend on the value of searching for truthful information. We fully discuss which evolutionarily stable information (ESI) search strategies and which optimal information (OI) search strategies eradicate (or not) the rumor and the corresponding expected payoffs. As a corollary of our results, a recommendation for legislators and policymakers who aim to eradicate harmful rumors is to make the search for truthful information free or rewarding.
- A Repeated Strategy for DumpingPublication . Martins, José; Banik, N.; Pinto, Alberto A.In this work, we study the phenomena of dumping in a duopoly market through an infinitely repeated game. We consider two firms of different countries competing in the same country. When both firms are cooperating, if the foreign firm deviates from cooperation this can be interpreted as dumping and a period of punishment can be imposed to the foreign firm. After this, firms can play continuously the deviation-punishment game or compete à la Cournot. Previously, we observe that the repeated strategy of deviation-punishment is not adopted in the case of symmetric demand equations. Here, we observe that this strategy of repeated dumping can appear as the best repeated strategy when the demand equations are non-symmetric.
- Dynamics of Epidemiological ModelsPublication . Pinto, Alberto; Aguiar, Maíra; Martins, José; Stollenwerk, NicoWe study the SIS and SIRI epidemic models discussing different approaches to compute the thresholds that determine the appearance of an epidemic disease. The stochastic SIS model is a well known mathematical model, studied in several contexts. Here, we present recursively derivations of the dynamic equations for all the moments and we derive the stationary states of the state variables using the moment closure method. We observe that the steady states give a good approximation of the quasi-stationary states of the SIS model. We present the relation between the SIS stochastic model and the contact process introducing creation and annihilation operators. For the spatial stochastic epidemic reinfection model SIRI, where susceptibles S can become infected I, then recover and remain only partial immune against reinfection R, we present the phase transition lines using the mean field and the pair approximation for the moments. We use a scaling argument that allow us to determine analytically an explicit formula for the phase transition lines in pair approximation.
- Applications of fractional calculus to epidemiological modelsPublication . Skwara, Urszula; Martins, José; Ghaffari, Peyman; Aguiar, Maíra; Boto, João; Stollenwerk, NicoEpidemiological spreading does not only happen from person to neighbouring person but often over wide distances, when infected but asymptomatic persons travel and carry infection to others over wide distances. Superdiffusion has been suggested to model such spreading in spatially restriced contact networks, i.e. there is still a notion of geographical distance, but spreading happens with high probability proportional to large distances. From fractional calculus several ways of describing superdiffusion are know. Here we investigate the representation in Fourier space and which is easily generalizable to higher dimensional space in order to compare with stochastic models of epidemiological spreading.
- A spatially stochastic epidemic model with partial immunization shows in mean field approximation the reinfection thresholdPublication . Stollenwerk, Nico; van Noort, Sander; Martins, José; Aguiar, Maíra; Hilker, Frank; Pinto, Alberto; Gomes, GabrielaRecently, the notion of a reinfection threshold in epidemiological models of only partial immunity has been debated in the literature. We present a rigorous analysis of a model of reinfection which shows a clear threshold behaviour at the parameter point where the reinfection threshold was originally described. Furthermore, we demonstrate that this threshold is the mean field version of a transition in corresponding spatial models of immunization. The reinfection threshold corresponds to the transition between annular growth of an epidemics spreading into a susceptible area leaving recovered behind and compact growth of a susceptible-infected-susceptible region growing into a susceptible area. This transition between annular growth and compact growth was described in the physics literature long before the reinfection threshold debate broke out in the theoretical biology literature.
