CDRsp - Artigos em revistas internacionais
URI permanente para esta coleção:
Navegar
Percorrer CDRsp - Artigos em revistas internacionais por assunto "3D printing"
A mostrar 1 - 5 de 5
Resultados por página
Opções de ordenação
- 3D printed poly(E-caprolactone)/Hydroxyapatite scaffolds for bone tissue engineering: A comparative study on a Composite Preparation by Melt blending or solvent casting techniques and the influence of bioceramic content on scaffold propertiesPublication . Biscaia, Sara; Branquinho, Mariana V.; Alvites, Rui D.; Fonseca, Rita; Sousa, Ana Catarina; Pedrosa, Sílvia Santos; Caseiro, Ana R.; Guedes, Fernando; Patrício, Tatiana; Viana, Tânia; Mateus, Artur; Maurício, Ana C.; Alves, NunoBone tissue engineering has been developed in the past decades, with the engineering of bone substitutes on the vanguard of this regenerative approach. Polycaprolactone-based scaffolds are fairly applied for bone regeneration, and several composites have been incorporated so as to improve the scaffolds’ mechanical properties and tissue in-growth. In this study, hydroxyapatite is incorporated on polycaprolactone-based scaffolds at two different proportions, 80:20 and 60:40. Scaffolds are produced with two different blending methods, solvent casting and melt blending. The prepared composites are 3D printed through an extrusion-based technique and further investigated with regard to their chemical, thermal, morphological, and mechanical characteristics. In vitro cytocompatibility and osteogenic differentiation was also assessed with human dental pulp stem/stromal cells. The results show the melt-blending-derived scaffolds to present more promising mechanical properties, along with the incorporation of hydroxyapatite. The latter is also related to an increase in osteogenic activity and promotion. Overall, this study suggests polycaprolactone/hydroxyapatite scaffolds to be promising candidates for bone tissue engineering, particularly when produced by the MB method.
- Design of a Video Otoscope Prototype with an Integrated Scanner for Hearing Aid Direct Digital Manufacturing: A Preliminary StudyPublication . Ganhão, Francisco; Santos, António Carvalho; Silva, Carla; Monteiro de Moura, Carla SofiaIn the current landscape of hearing rehabilitation, ear mold manufacturing typically involves the injection of silicone into the external ear canal (EEC) of each patient. This invasive procedure poses several risks, including the potential for silicone residue retention and tympanic membrane perforation, which may necessitate surgical intervention. To mitigate these risks, we present the design of a video otoscope that integrates a scanner capable of capturing high-precision, real-time images of the EEC’s geometry. The developed device allows (i) the generation of a 3D CAD model leading to the direct, quick, and low-cost production of customized hearing aids using 3D printing and (ii) the establishment of medical protocols for carrying out diagnoses and monitoring of hearing pathology evolution using methodologies based on Artificial Intelligence. Furthermore, the use of customized hearing aids that allow the application of Rhythmic Auditory Stimulation (RAS) and music therapy enhances audiology as an alternative and innovative way to treat cognitive and degenerative diseases, as well as pathological disorders.
- Does Printing Orientation Matter in PolyJet 3D Printed Teeth for Endodontics? A Micro-CT AnalysisPublication . Barbosa, Cláudia; Reis, Tiago; Reis, José B.; Franco, Margarida; Batista, Catarina; Ruben, Rui B.; Martín-Biedma, Benjamín; Martín-Cruces, JoseThis study aimed to identify the optimal printing orientation (X, Y, or Z axis) and positioning of a mandibular molar presenting an isthmus using PolyJet™ technology. The influence of these parameters on dimensional accuracy and on the behavior of 3D-printed teeth (3DPT) during endodontic preparation with ProTaper Gold® system was evaluated. Six groups (XA, XB, YA, YB, ZA, ZB; n = 10) were printed with different axis orientations and distinct isthmus positions relative to the build platform. All samples underwent micro-computed tomography scanning before and after endodontic preparation. Regarding preoperative analyses—canal volume, centroids, and total tooth volume and area—no significant differences were found between groups XA–YA or XB–YB (p > 0.05), supporting their comparability. In contrast, groups ZA and ZB differed significantly from all others (p < 0.05), failing to meet equivalence required for further comparison, and were therefore excluded. Postoperative evaluation—volume change, centroid displacement, transportation, and unprepared areas—revealed no significant differences between XA–YA and XB–YB. Within the limitations of this study, both printing orientation and position affected the accuracy and repeatability of 3DPT, with positioning exerting the greatest influence, while their behavior towards endodontic preparation remained consistent across orientations.
- Improving the process of making rapid prototyping models from medical ultrasound imagesPublication . Vaezi, Mohammad; Chua, Chee Kai; Chou, Siaw MengPurpose – Today, medical models can be made by the use of medical imaging systems through modern image processing methods and rapid prototyping (RP) technology. In ultrasound imaging systems, as images are not layered and are of lower quality as compared to those of computerized tomography (CT) and magnetic resonance imaging (MRI), the process for making physical models requires a series of intermediate processes and it is a challenge to fabricate a model using ultrasound images due to the inherent limitations of the ultrasound imaging process. The purpose of this paper is to make high quality, physical models from medical ultrasound images by combining modern image processing methods and RP technology. Design/methodology/approach – A novel and effective semi-automatic method was developed to improve the quality of 2D image segmentation process. In this new method, a partial histogram of 2D images was used and ideal boundaries were obtained. A 3D model was achieved using the exact boundaries and then the 3D model was converted into the stereolithography (STL) format, suitable for RP fabrication. As a case study, the foetus was chosen for this application since ultrasonic imaging is commonly used for foetus imaging so as not to harm the baby. Finally, the 3D Printing (3DP) and PolyJet processes, two types of RP technique, were used to fabricate the 3D physical models. Findings – The physical models made in this way proved to have sufficient quality and shortened the process time considerably. Originality/value – It is still a challenge to fabricate an exact physical model using ultrasound images. Current commercial histogram-based segmentation method is time-consuming and results in a less than optimum 3D model quality. In this research work, a novel and effective semi-automatic method was developed to select the threshold optimum value easily.
- The Use of Polypropylene and High-Density Polyethylene on Cork Plastic Composites for Large Scale 3D PrintingPublication . Brites, Fernando; Malça, Cândida; Gaspar, F.; Horta, J. F.; Franco, M. C.; Biscaia, S.; Mateus, A.This work focuses on studying the possibility of 3D printing of composite materials composed by cork and a polymer matrix (CPC). Initially the cork was mixed with two types of polymers (HDPE and PP) in different proportions and later processed using extrusion and injection. The composites were tested to study the physical, chemical and mechanical properties. The material was then tested on a large-scale 3D printer to study its feasibility and the ability to produce new products through 3D printing. Attention was focused on the use of pure cork, varying the concentration of cork and coupling agent in thermoplastic matrix composites of PP and HDPE. It was demonstrated that the increase of 5wt.% of coupling agent in the two types of polymers significantly improved the mechanical properties and adhesion between the phases but the increase in cork concentration decreased mechanical properties and crystallinity. The CPCs with PP showed to have better mechanical properties, better aesthetic and internal structural quality, and easier processability than those with HDPE matrix. Nevertheless, the HDPE CPCs showed a high degree of crystallization. Concerning 3D printing, it was demonstrated the possibility of making new products based on natural cork fibers, showing promising results, although additional research is still needed to optimize the process.
