Escola Superior de Tecnologia e Gestão
Permanent URI for this community
Browse
Browsing Escola Superior de Tecnologia e Gestão by Sustainable Development Goals (SDG) "09:Indústria, Inovação e Infraestruturas"
Now showing 1 - 10 of 317
Results Per Page
Sort Options
- 2D and 3D Digital Image Correlation in Civil Engineering – Measurements in a Masonry WallPublication . Ramos, Tiago; Furtado, André; Eslami, Shayan; Alves, Sofia; Rodrigues, Hugo; Arêde, António; Tavares, Paulo J.; Moreira, P.M.G.P.Reinforced concrete structures play an important role in modern buildings, and common architectural designs often include RC frames strengthened with infill masonry panels. Due to their brittle nature, these components' failure and collapse have been subject of studies which can lead to proper structural diagnose and design in order to decrease their risk to human lives during seismic activities. Digital image correlation was used in two of these studies, in order to validate its ability for large specimens monitoring and future structural health monitoring applications. It enabled spatial reconstruction of the wall movement, characterization of its rigid body motion and measurement of both displacements and strain fields in in-plane and out-of-plane load applications. Data post-processing allowed the identification of common in-plane damages in the wall such as corner crushing and separation between infill and resistant structure.
- 3D bioprinting of photocrosslinkable hydrogel constructsPublication . Brás Pereira, Rúben Filipe; Bartolo, PauloThree‐dimensional (3D) bioprinting comprises a group of biofabrication technologies for the additive manufacturing of 3D constructs by precisely printing biocompatible materials, cells and biochemicals in predesigned spatial positions. These technologies have been successfully applied to fabricate biodegradable 3D constructs with intricate architectures and heterogeneous composition, assuming a pivotal role in the field of tissue engineering. However, the full implementation of bioprinting strongly depends on the development of novel biomaterials exhibiting fast crosslinking schemes and appropriate printability, cell‐compatibility and biomechanical properties. Photocrosslinkable hydrogels are attractive materials for bioprinting as they provide fast polymerization under cell‐compatible conditions and exceptional spatiotemporal control over the gelation process. Photopolymerization can also be performed during the bioprinting to promote the instantaneous formation of hydrogel with high well‐defined architecture and structural stability. In this review paper, we summarize the most recent developments on bioprinting of photocrosslinkable biodegradable hydrogels for tissue engineering, focusing on the chemical modification strategies and the combination of photocrosslinking reactions with other gelation modalities.
- 3D Photo-Fabrication for Tissue Engineering and Drug DeliveryPublication . Brás Pereira, Rúben Filipe; Bartolo, PauloThe most promising strategies in tissue engineering involve the integration of a triad of biomaterials, living cells, and biologically active molecules to engineer synthetic environments that closely mimic the healing milieu present in human tissues, and that stimulate tissue repair and regeneration. To be clinically effective, these environments must replicate, as closely as possible, the main characteristics of the native extracellular matrix (ECM) on a cellular and subcellular scale. Photo-fabrication techniques have already been used to generate 3D environments with precise architectures and heterogeneous composition, through a multi-layer procedure involving the selective photocrosslinking reaction of a light-sensitive prepolymer. Cells and therapeutic molecules can be included in the initial hydrogel precursor solution, and processed into 3D constructs. Recently, photo-fabrication has also been explored to dynamically modulate hydrogel features in real time, providing enhanced control of cell fate and delivery of bioactive compounds. This paper focuses on the use of 3D photo-fabrication techniques to produce advanced constructs for tissue regeneration and drug delivery applications. State-of-the-art photo-fabrication techniques are described, with emphasis on the operating principles and biofabrication strategies to create spatially controlled patterns of cells and bioactive factors. Considering its fast processing, spatiotemporal control, high resolution, and accuracy, photo-fabrication is assuming a critical role in the design of sophisticated 3D constructs. This technology is capable of providing appropriate environments for tissue regeneration, and regulating the spatiotemporal delivery of therapeutics.
- 3D printing of new biobased unsaturated polyesters by microstereo-thermal-lithographyPublication . Gonçalves, Filipa A. M. M.; Costa, Cátia S. M. F.; Fabela, Inês G. P.; Farinha, Dina; Faneca, Henrique; Simões, Pedro N.; Serra, Arménio C.; Bártolo, Paulo J.; Coelho, Jorge F. J.New micro three-dimensional (3D) scaffolds using biobased unsaturated polyesters (UPs) were prepared by microstereo-thermal-lithography (μSTLG). This advanced processing technique offers indubitable advantages over traditional printing methods. The accuracy and roughness of the 3D structures were evaluated by scanning electron microscopy and infinite focus microscopy, revealing a suitable roughness for cell attachment. UPs were synthesized by bulk polycondensation between biobased aliphatic diacids (succinic, adipic and sebacic acid) and two different glycols (propylene glycol and diethylene glycol) using fumaric acid as the source of double bonds. The chemical structures of the new oligomers were confirmed by proton nuclear magnetic resonance spectra, attenuated total reflectance Fourier transform infrared spectroscopy and matrix assisted laser desorption/ionization-time of flight mass spectrometry. The thermal and mechanical properties of the UPs were evaluated to determine the influence of the diacid/glycol ratio and the type of diacid in the polyester's properties. In addition an extensive thermal characterization of the polyesters is reported. The data presented in this work opens the possibility for the use of biobased polyesters in additive manufacturing technologies as a route to prepare biodegradable tailor made scaffolds that have potential applications in a tissue engineering area.
- 3D shape prior active contours for an automatic segmentation of a patient specific femur from a CT scanPublication . Almeida, D.; Folgado, J.; Fernandes, P.R.; Ruben, RuiThe following paper describes a novel approach to a medical image segmentation problem. The fully automated computational procedure receives as input images from CT scan exams of the human femur and returns a three dimensional representation of the bone. This patient specific iterative approach is based in 3D active contours without edges, implemented over a level set framework, on which the evolution of the contour depends on local image parameters which can easily be defined by the user but also on a priori information about the volume to segment. This joint approach will lead to an optimal solution convergence of the iterative method. The resulting point cloud can be an excellent starting point for a Finite Element mesh generation and analysis or the basis for a stereolitography for example.
- 3D Video Representation and CodingPublication . Faria, Sergio M.M.; Debono, Carl J.; Nunes, Paulo; M. M. Rodrigues, NunoThe technologies which allow an immersive user experience in 3D environments are rapidly evolving and new services have emerged in various fields of application. Most of these services require the use of 3D video, combined with appropriate display systems. As a consequence, research and development in 3D video continues attracting sustained interest. While stereoscopic viewing is already widely spread, namely in TV and gaming, new displays and applications, such as FTV (Free viewpoint TV), require the use of a larger number of views. Hence, the multiview video format was considered, which uses N views, corresponding to the images captured by N cameras (either real or virtual), with a controlled spatial arrangement. In order to avoid a linear escalation of the bitrate, associated with the use of multiple views, video-plus-depth formats have been proposed. A small number of texture and depth video sequences are used to synthesize intermediate texture views at a different space position, through a depth-image-based rendering (DIBR) technique. This technology allows the use of advanced stereoscopic display processing and to improve support for high-quality autostereoscopic multiview displays. In order to provide a true 3D content and fatigue-free 3D visualization, holoscopic imaging has been introduced as an acquisition and display solution. However, efficient coding schemes for this particular type of content are needed to enable proper storage and delivery of the large amount of data involved in these systems, which is also addressed in this chapter.
- 3D-printed multisampling holder for microcomputed tomography applied to life and materials science researchPublication . Vasconcelos, Isabel; Franco, Margarida; Pereira, Mário; Duarte, Isabel; Ginjeira, António; Alves, NunoThe aim of this work was to design, fabricate, test and validate a 3D-printed multisampling holder for multi-analysis by microcomputed tomography. Different raw materials were scanned by microcomputed tomography. The raw material chosen was used to fabricate the holder by 3D printing. To validate the multisampling holder, five teeth were filled with a high density-material and scanned in two ways: a single and a multisampling scan mode. For each tooth, the root canal filling volume, porosity volume, closed pore volume, and open pore volume were calculated and compared when the same tooth was scanned in the two sampling scan mode. ABSplus P430™ allowed a high transmission value (84.3 %), and then it was the polymeric material selected to fabricate the holder. In a single sampling scan mode, the scan duration for scanning five teeth was 87.42 min, contrasting with 21.51 min for a multisampling scan mode, which scanned five teeth at the same time. The scan duration time and the cost using a multisampling holder represented a reduction of 75 % and the data volume generated represented a reduction of 60 %. Comparing the two scan modes, the results also showed that the difference of root canal filling volume, porosity volume, closed pore volume, and open pore volume was not statistically significant (p > .05). The multisampling holder was validated to do multi-analysis by microcomputed tomography without significant loss of quantitative accuracy data, allowing a reduction in scan duration time, imaging cost, and data storage.
- 3SqAir Project: A Living Lab Towards Sustainable Smart Strategy for Indoor Climate Quality Assurance in ClassroomsPublication . Ogundiran, James; Nyembwe, Jean-Paul Kapuya Bulaba; Ogundiran, John Omomoluwa; De Souto Santos, Rúben Alexandre; Pereira, Luísa Dias; Silva, Manuel Gameiro daThe indoor climate quality in classrooms at the University of Coimbra, Portugal, was investigated as part of the 3SqAir project, supported by the Interreg SUDOE program. This research focused on two equipped classrooms with different ventilation systems: natural and mechanical ventilation. Both classrooms were continuously monitored for IEQ parameters: thermal comfort, indoor air quality, noise, and lighting during heating and cooling seasons. Air temperature, relative humidity, CO2 concentration, particulate matter, nitrogen dioxide, volatile organic compounds, formaldehyde, sound pressure level, and illuminance were measured. Outdoor weather conditions were also recorded. The primary focus was on air temperature, CO2 concentrations, and relative humidity, while air change rates (ACH) were estimated using the Tracer Gas Method. The results showed inadequate thermal conditions in both classrooms, particularly during the heating season. Most weekly mean CO2 concentrations were within acceptable limits, while ACH were below standard recommendations in four CO2 decay phases. Simulations of CO2 decay revealed further air quality gaps in each room. Corrective measures within the 3SqAir project framework were suggested for approval and implementation while monitoring continues. This work represents the first phase in an evolving study towards developing sustainable strategies for improving indoor air quality in classrooms.
- 802.21-MPA-IMS ArchitecturePublication . Rodrigues, Carlos Miguel de Jesus; Rabadão, Carlos; Pereira, AntónioMobility has become a keyword nowadays with the evolution of mobile devices market and proliferation of realtime services. IP Multimedia Subsystem (IMS) is a single, standardized service framework that supports voice, video, data and messaging services, but does not provide seamless mobility for packet based sessions. This paper purposes an IMS architecture with IEEE 802.21 and media-independent pre-authentication (MPA) integrated. IEEE 802.21 can enable this seamless mobility in IMS and, additionally, MPA provides a secure handover optimization scheme, reducing, as a consequence, handover latency. The main goal of this architecture is to provide seamless and secure handovers between different access technologies in an IMS-based environment.
- A Software-Defined Radio for Future Wireless Communication Systems at 60 GHzPublication . Gomes, Rodolfo; Duarte, Luis; Ribeiro, Carlos; Caldeirinha, RafaelThis paper reports on a complete end-to-end 5G mmWave testbed fully reconfigurable based on a FPGA architecture. The proposed system is composed of a baseband/low-IF processing unit, and a mmWave RF front-end at both TX/RX ends. In particular, the baseband unit design is based on a typical agile digital IF architecture, enabling on-the-fly modulations up to 256-QAM. The real-time 5G mmWave testbed, herein presented, adopts OFDM as the transmission scheme waveform, which was assessed OTA by considering the key performance indicators, namely EVM and BER. A detailed overview of system architecture is addressed together with the hardware considerations taken into account for the mmWave testbed development. Following this, it is demonstrated that the proposed testbed enables real-time multi-stream transmissions of UHD video content captured by nine individual cameras, which is in fact one of the killing applications for 5G.
