Unidade de Investigação - CDRsp – Centro para o Desenvolvimento Rápido e Sustentado de Produto
Permanent URI for this community
Browse
Browsing Unidade de Investigação - CDRsp – Centro para o Desenvolvimento Rápido e Sustentado de Produto by Field of Science and Technology (FOS) "Ciências Médicas::Ciências da Saúde"
Now showing 1 - 9 of 9
Results Per Page
Sort Options
- 3D Photo-Fabrication for Tissue Engineering and Drug DeliveryPublication . Brás Pereira, Rúben Filipe; Bartolo, PauloThe most promising strategies in tissue engineering involve the integration of a triad of biomaterials, living cells, and biologically active molecules to engineer synthetic environments that closely mimic the healing milieu present in human tissues, and that stimulate tissue repair and regeneration. To be clinically effective, these environments must replicate, as closely as possible, the main characteristics of the native extracellular matrix (ECM) on a cellular and subcellular scale. Photo-fabrication techniques have already been used to generate 3D environments with precise architectures and heterogeneous composition, through a multi-layer procedure involving the selective photocrosslinking reaction of a light-sensitive prepolymer. Cells and therapeutic molecules can be included in the initial hydrogel precursor solution, and processed into 3D constructs. Recently, photo-fabrication has also been explored to dynamically modulate hydrogel features in real time, providing enhanced control of cell fate and delivery of bioactive compounds. This paper focuses on the use of 3D photo-fabrication techniques to produce advanced constructs for tissue regeneration and drug delivery applications. State-of-the-art photo-fabrication techniques are described, with emphasis on the operating principles and biofabrication strategies to create spatially controlled patterns of cells and bioactive factors. Considering its fast processing, spatiotemporal control, high resolution, and accuracy, photo-fabrication is assuming a critical role in the design of sophisticated 3D constructs. This technology is capable of providing appropriate environments for tissue regeneration, and regulating the spatiotemporal delivery of therapeutics.
- Design of a Video Otoscope Prototype with an Integrated Scanner for Hearing Aid Direct Digital Manufacturing: A Preliminary StudyPublication . Ganhão, Francisco; Santos, António Carvalho; Silva, Carla; Monteiro de Moura, Carla SofiaIn the current landscape of hearing rehabilitation, ear mold manufacturing typically involves the injection of silicone into the external ear canal (EEC) of each patient. This invasive procedure poses several risks, including the potential for silicone residue retention and tympanic membrane perforation, which may necessitate surgical intervention. To mitigate these risks, we present the design of a video otoscope that integrates a scanner capable of capturing high-precision, real-time images of the EEC’s geometry. The developed device allows (i) the generation of a 3D CAD model leading to the direct, quick, and low-cost production of customized hearing aids using 3D printing and (ii) the establishment of medical protocols for carrying out diagnoses and monitoring of hearing pathology evolution using methodologies based on Artificial Intelligence. Furthermore, the use of customized hearing aids that allow the application of Rhythmic Auditory Stimulation (RAS) and music therapy enhances audiology as an alternative and innovative way to treat cognitive and degenerative diseases, as well as pathological disorders.
- Effect of Preventive Exercise Programs for Swimmer’s Shoulder Injury on Rotator Cuff Torque and Balance in Competitive Swimmers: A Randomized Controlled TrialPublication . Tavares, Nuno; Vilas-Boas, João Paulo; Castro, Maria AntónioBackground: Over the season, competitive swimmers experience a progressive imbalance in rotator cuff strength, predisposing them to a significant risk factor for a swimmer’s shoulder injury. Objectives: Verify the effectiveness of two 12-week preventive programs on the shoulder rotators’ peak torque and conventional/functional ratios. Design: A care provider- and participant-blinded, parallel, randomized controlled trial with three groups. Participants: Competitive swimmers aged 16 to 35 years with no prior clinical issues related to their shoulders. Interventions: Twice a week, over 12 weeks, the two experimental groups performed five exercises where the only difference was executing the program with weights or elastic bands, and the control group performed a sham intervention. Main outcome measures: The concentric and eccentric peak torque of the internal and external rotators of the dominant shoulder were assessed before and after the intervention using an isokinetic dynamometer Biodex System 3, at 60°/s, 120°/s, and 180°/s. Results: Among the experimental groups, only one test indicated a reduction (p ≤ 0.05) in rotator peak torque, while the control group showed a decrease (p ≤ 0.05) in five tests. Swimmers who completed the prevention programs demonstrated less imbalance in conventional/functional ratios than controls. Conclusions: Implementing a 12-week preventive program minimizes the progressive shoulder rotational imbalance over the season in competitive swimmers. Clinical Trial Registration number: NCT06552585.
- Electromyographic activity of shoulder muscles on two preventive exercise programmes for swimmer’s shoulder: elastic band versus weightPublication . Tavares, Nuno; Castro, Maria António; Vilas-Boas, João Paulo; Fong, DanielStrength programmes have shown good results in preventing swimmer’s shoulder. However, there aren’t studies based on electromyographic (EMG) analysis in these programmes. This study aims to compare an EMG activity of the middle trapezius (MT), lower trapezius (LT), infraspinatus (IS), serratus anterior (SA), and pectoralis major (PM) in two swimmer’s shoulder preventive programmes – one performed with elastic band and the other with weights. Twenty competitive swimmers performed two strength programmes consisting of five exercises each, while the analysis of EMG activity in MT, LT, IS, SA, and PM for each exercise was recorded. The superficial EMG was used to collect data at a sampling frequency of 1000 hz. The Paired Sample T-test or the Wilcoxon test was applied to compare EMG activity between programmes. The internal rotation at 90º (p < 0.001) and external rotation at 90º (p ≤ 0.01) exercises produced high myoelectric shoulder muscle activity with an elastic band. Conversely, scapular punches (p < 0.001) exercise has high shoulder EMG activity when performed with weights. Performing the same preventive exercise programme with two different instruments produces great variability in the myoelectric activity of the shoulder muscles.
- Mesenchymal Stem Cells and Biomaterials Systems – Perspectives for Skeletal Muscle Tissue Repair and RegenerationPublication . Caseiro, A.R.; Pereira, T.; Bártolo, P. J.; Santos, J.D.; Luís, A.L.; Maurício, A.C.Skeletal muscle is essential in voluntary movement and other major vital functions. Muscle injuries are important in clinical practice and, despite skeletal muscle's good regenerative ability, severe tissue loss impairs complete myofibre regeneration, limiting structural and functional recovery of the affected muscle, eventually leading to the development of non-contractile fibrous scar. The intrinsic healing mechanisms rely in great extent on the residing progenitor population but significant drawbacks to their practical application in regenerative strategies boosted the search for alternative cell sources, such as extra-fetal mesenchymal stem cells (MSCs). MSCs have demonstrated to positively influence the regeneration of different disease models. When severe volumetric muscle tissue loss occurs, the body is seldom capable of replacing the lost portions with fully functional tissue. A rational strategy to aid the healing of such situations is the application of biomaterial implants that provide a structural matrix for the ingrowth of regenerating muscle fibres. Both synthetic and natural biomaterials have been hypothesized for this purpose and some have reached as far clinical cases applications. Obvious improvements are observed in most cases, but reaction to some biomaterials and functional recovery are still a challenge. The addition of MSCs to the biomaterials seems to improve the systems' performance in the overall regenerative milieu. This strategies promote scaffold's vascularization and integration, as well as accelerated tissue ingrowth and reduces scar formation, resulting in improved recovery rates at both structural and functional levels.
- Neural Markers of Neuropathic Pain Associated with Maladaptive Plasticity in Spinal Cord InjuryPublication . Pascoal-Faria, Paula; Yalcin, Nilufer; Fregni, FelipeObjectives: Given the potential use of neural markers for the development of novel treatments in spinal cord pain, we aimed to characterize the most effective neural markers of neuropathic pain following spinal cord injury (SCI). Methods: A systematic PubMed review was conducted, compiling studies that were published prior to April, 2014 that examined neural markers associated with neuropathic pain after SCI using electrophysiological and neuroimaging techniques. Results: We identified 6 studies: Four using electroencephalogram (EEG); 1 using magnetic resonance imaging (MRI) and FDG-PET (positron emission tomography); and 1 using MR spectroscopy. The EEG recordings suggested a reduction in alpha EEG peak frequency activity in the frontal regions of SCI patients with neuropathic pain. The MRI scans showed volume loss, primarily in the gray matter of the left dorsolateral prefrontal cortex, and by FDG-PET, hypometabolism in the medial prefrontal cortex was observed in SCI patients with neuropathic pain compared with healthy subjects. In the MR spectroscopy findings, the presence of pain was associated with changes in the prefrontal cortex and anterior cingulate cortex. Conclusions: When analyzed together, the results of these studies seem to point out to a common marker of pain in SCI characterized by decreased cortical activity in frontal areas and possibly increased subcortical activity. These results may contribute to planning further mechanistic studies as to better understand the mechanisms by which neuropathic pain is modulated in patients with SCI as well as clinical studies investigating best responders of treatment.
- Toward Integrative Biomechanical Models of Osteochondral Tissues: A Multilayered PerspectivePublication . Filipe Ramos Cardoso da Silva, Bruna; Marco Domingos; Amado, Sandra; Dias, Juliana; Pascoal-Faria, Paula; Ana C. Maurício; Alves, NunoUnderstanding the complex mechanical behavior of osteochondral tissues in silico is essential for improving experimental models and advancing research in joint health and degeneration. This review provides a comprehensive analysis of the constitutive models currently used to represent the different layers of the osteochondral region, from articular cartilage to subchondral bone, including intermediate regions such as the tidemark and the calcified cartilage layer. Each layer exhibits unique structural and mechanical properties, necessitating a layer-specific modeling approach. Through critical comparison of existing mathematical models, the viscoelastic model is suggested as a pragmatic starting point for modeling articular cartilage zones, the tidemark, and the calcified cartilage layer, as it captures essential time-dependent behaviors such as creep and stress relaxation while ensuring computational efficiency for initial coupling studies. On the other hand, a linear elastic model was identified as an optimal starting point for both the subchondral bone plate and the subchondral trabecular bone, reflecting their dense and stiff nature, and providing a coherent framework for early-stage multilayer integration. This layered modeling approach enables the development of physiologically coherent and computationally efficient representations of osteochondral region modeling. Furthermore, by establishing a layer-specific modeling approach, this review paves the way for modular in silico simulations through the coupling of computational models. Such an integrative framework supports scaffold design, in vitro experimentation, preclinical validation, and the mechanobiological exploration of osteochondral degeneration and repair. These efforts are essential for deepening our understanding of tissue responses under both physiological and pathological conditions. Ultimately, this work provides a robust theoretical foundation for future in silico and in vitro studies aimed at advancing osteochondral tissue regeneration strategies.
- Transcranial direct current stimulation in the neuromodulation of pain in fibromyalgia: A case study.Publication . DalĺAgnol, L; Pascoal-Faria, Paula; Barros Cecílio, S; Corrêa, F IAssessing effects of herbivory across broad gradients of varying ocean climate conditions and over small spatial scales is crucial for understanding its influence on primary producers. Effects of herbivory on the distribution and abundance of kelp recruits were examined experimentally at two regions under contrasting ocean climate. Specifically, the abundance and survivorship of kelp recruits and the abundance of macro-herbivores were compared between a ‘cool’ and a ‘warm’ region in northern and central Portugal, respectively. In each region, the abundance of kelp recruits and the intensity of grazing were compared between habitats of different topography within reefs (open reef vs. crevices). Compared to the ‘warm’ region, the abundance of kelp recruits was 3.9 times greater in the ‘cool’ region, where 85% of recruits were found in open reef habitats. In contrast, 87% of recruits in the ‘warm’ region were restricted to crevices. The ‘warm’ region had 140 times greater abundances of sea urchins, 45 times more herbi vorous fish and 4.1 times more grazing marks on kelp recruits than the ‘cool’ region. Grazing assays showed ca. 50 times higher rates of kelp biomass consumption, mainly by fishes, and zero survivorship of kelp recruits in the ‘warm’ relative to the ‘cool’ region. This study suggests both temperature and herbivores affect abundances of kelp recruits across latitudes, and demonstrates how herbivores affect their distribution at local scales, driving kelp recruits into ‘hiding’ in crevices under intense herbivory. Consequently, where net recruitment success is compromised by herbivory, the persistence of kelps will be contingent on availability of topographical refuges.
- Visual Fixations in Basketball Shooting: Differences between Shooting ConditionsPublication . Amaro, Catarina M.; Castro, Maria António; Mendes, Rui; Gomes, Beatriz B.Basketball is a sport where shooting is one of the most important factors that determines the success or failure of the teams. Therefore, basketball players need to shoot the ball accurately. The present study aimed to evaluate whether different shooting conditions influence the visual behavior of athletes. For this, the Tobbi Pro Glasses 3 equipment was used to evaluate the time of the first fixation, the number of fixations, and the total time of fixations in the basket, during the shooting movement. Different distances to the basket, simulated gym audience noise, and shooting with opposition were considered. A group of 18 athletes with an average age of 22 ± 3.72 years and an average basketball practice experience of 12.5 ± 4.52 years performed 10 valid shots from different distances and different shooting angles, with different restrictions, namely, shooting with simulated opposition and gym audience noise. Statistically significant differences between shooting with opposition and baseline, in terms of the number of fixations and the total time of fixation, were found. Regarding shooting with gym audience noise, differences only occur for the total time of fixations in one position. Despite this, in all variables and positions, the values were lower in shooting with constraints compared to the baseline.
