CDRsp - Comunicações em conferências internacionais
URI permanente para esta coleção:
Navegar
Percorrer CDRsp - Comunicações em conferências internacionais por Domínios Científicos e Tecnológicos (FOS) "Engenharia e Tecnologia::Outras Engenharias e Tecnologias"
A mostrar 1 - 2 de 2
Resultados por página
Opções de ordenação
- Numerical Calculations in Tissue EngineeringPublication . Almeida, Henrique de Amorim; Bártolo, Paulo J.The design of optimized scaffolds for tissue engineering is a key topic of research, as the complex macro- and micro- architectures required for a scaffold depends not only on the mechanical properties, but also on the physical and molecular queues of the surrounding tissue within the defect site. Thus, the prediction of optimal features for tissue engineering scaffolds is very important for its mechanical, vascular or topological properties. The relationship between high scaffold porosity and high mechanical properties is contradictory, as it becomes even more complex due to the scaffold degradation process. A scaffold design strategy was developed, based on the finite element method, to optimise the scaffold design regarding the mechanical and vascular properties as a function of porosity. Scaffolds can be considered as a LEGO structure formed by an association of small elementary units or blocks. In this research work, two types of family elementary scaffold units were considered: non-triple periodic minimal surfaces and triple periodic minimal surfaces that describe natural existing surfaces. The main objective of this work is to present the undergoing research based on numerical simulations for the evaluation and prediction of the scaffold's behaviour under structural and vascular loading, and its topological optimisation.
- Quantification and Modulation of Tremor in Rapid Upper Limb MovementsPublication . Faria, Paula; Leal, Adriana; Freire, António; Januário, Cristina; Patrício, Miguel; Castelo-Branco, MiguelTremor is a manifestation of a variety of human neurodegenerative diseases, notably Parkinson’s disease (PD), a chronic disease that affects one in 100 people over age 60 years. Recent research indicates that more than five million worldwide have PD. This disease is primarily caused by a progressive loss of dopamine neurons in the nigrostriatal system that leads to widespread motor symptoms such as bradykinesia, rigidity, tremor and postural instability. Although the diagnosis of PD remains clinical, advances in functional and structural imaging have improved the ability to differentiate between PD and Essential Tremor (ET), as well as between different akinetic-rigid syndromes. No definitive test or biomarker is available for PD, so the rate of misdiagnosis is relatively high. It is therefore crucial to be able to characterize tremor in PD and ET as it is a very common feature at the onset of both diseases. This is made possible with a combination of a neuroscientific and methodological multi-modal imaging approaches, namely kinetic recording methods using accelerometers to quantify tremor amplitude and frequency and functional magnetic resonance imaging (fMRI). These allow the identification of the neural underpinnings of tremor in both PD and ET patients, which in fact have been surprisingly difficult to decipher. In this work we aim to find which tasks involving upper limb movements are suitable to modulate both PD and ET tremor. The same tasks are considered with and without added loading. The resulting analysis will allow designing an efficient fMRI protocol aiming at the identification of the cortical circuits responsible for the modulation of tremor.
