Browsing by Author "Teodoro, Douglas"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Detection of Patients at Risk of Multidrug-Resistant Enterobacteriaceae Infection Using Graph Neural Networks: A Retrospective StudyPublication . Gouareb, Racha; Bornet, Alban; Proios, Dimitrios; Pereira, Sónia Gonçalves; Teodoro, DouglasBackground: While Enterobacteriaceae bacteria are commonly found in the healthy human gut, their colonization of other body parts can potentially evolve into serious infections and health threats. We investigate a graph-based machine learning model to predict risks of inpatient colonization by multidrug-resistant (MDR) Enterobacteriaceae. Methods: Colonization prediction was defined as a binary task, where the goal is to predict whether a patient is colonized by MDR Enterobacteriaceae in an undesirable body part during their hospital stay. To capture topological features, interactions among patients and healthcare workers were modeled using a graph structure, where patients are described by nodes and their interactions are described by edges. Then, a graph neural network (GNN) model was trained to learn colonization patterns from the patient network enriched with clinical and spatiotemporal features. Results: The GNN model achieves performance between 0.91 and 0.96 area under the receiver operating characteristic curve (AUROC) when trained in inductive and transductive settings, respectively, up to 8% above a logistic regression baseline (0.88). Comparing network topologies, the configuration considering ward-related edges (0.91 inductive, 0.96 transductive) outperforms the configurations considering caregiver-related edges (0.88, 0.89) and both types of edges (0.90, 0.94). For the top 3 most prevalent MDR Enterobacteriaceae, the AUROC varies from 0.94 for Citrobacter freundii up to 0.98 for Enterobacter cloacae using the best-performing GNN model. Conclusion: Topological features via graph modeling improve the performance of machine learning models for Enterobacteriaceae colonization prediction. GNNs could be used to support infection prevention and control programs to detect patients at risk of colonization by MDR Enterobacteriaceae and other bacteria families.
- STM-GNN: Space-Time-and-Memory Graph Neural Networks for Predicting Multi-Drug Resistance Risks in Dynamic Patient NetworksPublication . Geissbuhler, Damien; Bornet, Alban; Marques, Catarina; Anjos, André; Pereira, Sónia; Teodoro, DouglasHospital-acquired infections (HAIs), particularly those caused by multidrug-resistant (MDR) bacteria, pose significant risks to vulnerable patients. Accurate predictive models are important for assessing infection dynamics and informing infection prediction and control (IPC) programmes. Graph-based methods, including graph neural networks (GNNs), offer a powerful approach to model complex relationships between patients and environments but often struggle with data sparsity, irregularity, and heterogeneity. We propose the space-time-and-memory (STM)-GNN, a temporal GNN enhanced with recurrent connectivity designed to capture spatiotemporal infection dynamics. STM-GNN effectively integrates sparse, heterogeneous data combining network information from patient-environment interactions and internal memory from historical colonization and contact patterns. Using a unique IPC dataset containing clinical and environmental colonization information collected from a long-term healthcare unit, we show that STM-GNN effectively addresses the challenges of limited and irregular data in an MDR prediction task. Our model reaches 0.84 AUROC, and achieves the most balanced performance overall compared to classic machine learning algorithms, as well as temporal GNN approaches.