Browsing by Author "Silva, Fernando José Mateus da"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- AlineaGA - a genetic algorithm with local search optimization for multiple sequence alignmentPublication . Silva, Fernando José Mateus da; Pérez, Juan Manuel Sánchez; Pulido, Juan Antonio Gómez; Rodríguez, Miguel A. VegaThe alignment and comparison of DNA, RNA and Protein sequences is one of the most common and important tasks in Bioinformatics. However, due to the size and complexity of the search space involved, the search for the best possible alignment for a set of sequences is not trivial. Genetic Algorithms have a predisposition for optimizing general combinatorial problems and therefore are serious candidates for solving multiple sequence alignment tasks. Local search optimization can be used to refine the solutions explored by Genetic Algorithms. We have designed a Genetic Algorithm which incorporates local search for this purpose: AlineaGA. We have tested AlineaGA with representative sequence sets of the globin family. We also compare the achieved results with the results provided by T-COFFEE.
- A niched pareto genetic algorithm: For multiple sequence alignment optimizationPublication . Silva, Fernando José Mateus da; Pérez, Juan Manuel Sánchez; Pulido, Juan Antonio Gómez; Rodríguez, Miguel A. VegaThe alignment of molecular sequences is a recurring task in bioinformatics, but it is not a trivial problem. The size and complexity of the search space involved difficult the task of finding the optimal alignment of a set of sequences. Due to its adaptive capacity in large and complex spaces, Genetic Algorithms emerge as good candidates for this problem. Although they are often used in single objective domains, its use in multidimensional problems allows finding a set of solutions which provide the best possible optimization of the objectives - the Pareto front. Niching methods, such as sharing, distribute these solutions in space, maximizing their diversity along the front. We present a niched Pareto Genetic Algorithm for sequence alignment which we have tested with six BAliBASE alignments, taking conclusions regarding population evolution and quality of the final results. Whereas methods for finding the best alignment are mathematical, not biological, having a set of solutions which facilitate experts' choice, is a possibility to consider.
- Optimizing Multiple Sequence Alignment by Improving Mutation Operators of a Genetic AlgorithmPublication . Silva, Fernando José Mateus da; Pérez, Juan Manuel Sánchez; Pulido, Juan Antonio Gómez; Rodríguez, Miguel A. Vega; Silva, Fernando;Searching for the best possible alignment for a set of sequences is not an easy task, mainly because of the size and complexity of the search space involved. Genetic algorithms are predisposed for optimizing general combinatorial problems in large and complex search spaces. We have designed a Genetic Algorithm for this purpose, AlineaGA, which introduced new mutation operators with local search optimization. Now we present the contribution that these new operators bring to this field, comparing them with similar versions present in the literature that do not use local search mechanisms. For this purpose, we have tested different configurations of mutation operators in eight BAliBASE alignments, taking conclusions regarding population evolution and quality of the final results. We conclude that the new operators represent an improvement in this area, and that their combined use with mutation operators that do not use optimization strategies, can help the algorithm to reach quality solutions.
- Parallel AlineaGA: An island parallel evolutionary algorithm for multiple sequence alignmentPublication . Silva, Fernando José Mateus da; Pérez, Juan Manuel Sánchez; Pulido, Juan Antonio Gómez; Ródriguez, Miguel A. VegaMultiple sequence alignment is the base of a growing number of Bioinformatics applications. This does not mean that the accuracy of the existing methods corresponds to biologically faultless alignments. Searching for the optimal alignment for a set of sequences is often hindered by the size and complexity of the search space. Parallel Genetic Algorithms are a class of stochastic algorithms which can increase the speed up of the algorithms. They also enhance the efficiency of the search and the robustness of the solutions by delivering results that are better than those provided by the sum of several sequential Genetic Algorithms. AlineaGA is an evolutionary method for solving protein multiple sequence alignment. It uses a Genetic Algorithm on which some of its genetic operators embed a simple local search optimization. We have implemented its parallel version which we now present. Comparing with its sequential version we have observed an improvement in the search for the best solution. We have also compared its performance with ClustalW2 and T-Coffee, observing that Parallel AlineaGA can lead the search for better solutions for the majority of the datasets in study.
- Parallel Niche Pareto AlineaGA--an evolutionary multiobjective approach on multiple sequence alignmentPublication . Silva, Fernando José Mateus da; Sánchez Pérez, Juan Manuel; Gómez Pulido, Juan Antonio; Vega Rodríguez, Miguel A.Multiple sequence alignment is one of the most recurrent assignments in Bioinformatics. This method allows organizing a set of molecular sequences in order to expose their similarities and their differences. Although exact methods exist for solving this problem, their use is limited by the computing demands which are necessary for exploring such a large and complex search space. Genetic Algorithms are adaptive search methods which perform well in large and complex spaces. Parallel Genetic Algorithms, not only increase the speed up of the search, but also improve its efficiency, presenting results that are better than those provided by the sum of several sequential Genetic Algorithms. Although these methods are often used to optimize a single objective, they can also be used in multidimensional domains, finding all possible tradeoffs among multiple conflicting objectives. Parallel AlineaGA is an Evolutionary Algorithm which uses a Parallel Genetic Algorithm for performing multiple sequence alignment. We now present the Parallel Niche Pareto AlineaGA, a multiobjective version of Parallel AlineaGA. We compare the performance of both versions using eight BAliBASE datasets. We also measure up the quality of the obtained solutions with the ones achieved by T-Coffee and ClustalW2, allowing us to observe that our algorithm reaches for better solutions in the majority of the datasets.
