Repository logo
 
Loading...
Thumbnail Image
Publication

AlineaGA - a genetic algorithm with local search optimization for multiple sequence alignment

Use this identifier to reference this record.
Name:Description:Size:Format: 
AlineaGA-a genetic algorithm with local search optimization for multiple sequence alignment.pdfThe alignment and comparison of DNA, RNA and Protein sequences is one of the most common and important tasks in Bioinformatics. However, due to the size and complexity of the search space involved, the search for the best possible alignment for a set of sequences is not trivial. Genetic Algorithms have a predisposition for optimizing general combinatorial problems and therefore are serious candidates for solving multiple sequence alignment tasks. Local search optimization can be used to refine the solutions explored by Genetic Algorithms. We have designed a Genetic Algorithm which incorporates local search for this purpose: AlineaGA. We have tested AlineaGA with representative sequence sets of the globin family. We also compare the achieved results with the results provided by T-COFFEE.848.55 KBAdobe PDF Download

Advisor(s)

Abstract(s)

The alignment and comparison of DNA, RNA and Protein sequences is one of the most common and important tasks in Bioinformatics. However, due to the size and complexity of the search space involved, the search for the best possible alignment for a set of sequences is not trivial. Genetic Algorithms have a predisposition for optimizing general combinatorial problems and therefore are serious candidates for solving multiple sequence alignment tasks. Local search optimization can be used to refine the solutions explored by Genetic Algorithms. We have designed a Genetic Algorithm which incorporates local search for this purpose: AlineaGA. We have tested AlineaGA with representative sequence sets of the globin family. We also compare the achieved results with the results provided by T-COFFEE.

Description

Keywords

Multiple sequence alignments Genetic algorithms Local search Optimization Hybridization Bioinformatics

Pedagogical Context

Citation

da Silva, F.J.M., Sánchez Pérez, J.M., Gómez Pulido, J.A. et al. AlineaGA—a genetic algorithm with local search optimization for multiple sequence alignment. Appl Intell 32, 164–172 (2010). https://doi.org/10.1007/s10489-009-0189-4.

Research Projects

Organizational Units

Journal Issue

Publisher

Springer Nature

CC License

Altmetrics